Skip to main content
Log in

Symmetry in quantum theory: Implications for the convexity formalism, the measurement problem, and hidden variables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Symmetries are introduced into the convexity approach to physics. This allows one to make connections between classical and quantum theories by exploiting the properties of quantum mechanics on phase space. The measurement problem is discussed and many of the known no-go theorems are shown not to apply. Finally, hidden variable theories exhibiting these physical symmetries are shown to have a certain required group structure, if they exist at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. E. Mardsen, and T. Ratiu,Manifolds, Tensor Analysis, and Applications (Addison-Wesley, Reading, Massachusetts, 1983).

    MATH  Google Scholar 

  2. E. Beltrametti, “Trends in foundations of physics,” inStructures and Norms in Science, J. van Benthem, M. L. Dalla Chiara, and D. Mundici, eds. (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  3. E. G. Beltrametti and S. Bugajski, “A classical extension of quantum mechanics,”J. Phys. A: Math. Gen. 28, 3329–3343 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. A. Brooke and F. E. Schroeck, Jr., “Localization of the photon on phase space,”J. Math. Phys. 37, 5958–5986 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Busch, “A characterization of informationally complete sets of physical quantities,”Int. J. Theor. Phys. 30, 1217–1227 (1991).

    Article  MathSciNet  Google Scholar 

  6. P. Busch, G. Cassinelli, and P. J. Lahti, “Probability structures for quantum states,”Rev. Math. Phys. 7, 1105–1121 (1195).

    Article  MathSciNet  Google Scholar 

  7. P. Busch, M. Grabowski, and P. J. Lahti,Operational Quantum Physics (Springer, Berlin, 1995).

    MATH  Google Scholar 

  8. P. Busch, P. J. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement, 2nd edn. (Springer, Berlin, 1996).

    MATH  Google Scholar 

  9. D. Foulis and F. E. Schroeck, Jr., “Stochastic quantum, mechanics viewed from the language of manuals,”Found. Phys. 20, 823–858 (1990).

    Article  MathSciNet  Google Scholar 

  10. D. R. Grigore and O. T. Popp, “The complete classification of generalized homogeneous symplectic manifolds,”J. Math. Phys. 30, 2476–2483 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Guillemin and S. Sternberg,Symplectic Techniques in Physics (Cambridge University Press, New York, 1991).

    Google Scholar 

  12. D. M. Healy Jr. and F. E. Schroeck, Jr., “On informational completeness of covariant localization observables and Wigner coefficients,”J. Math. Phys. 36, 453–507 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. C. Hegerfeldt, “Remark on causality and particle localization,”Phys. Rev. D 10, 3320–3321 (1974).

    Article  ADS  Google Scholar 

  14. G. W. Mackey, “Imprimitivity for representations of locally compact groups,”Proc. Natl. Acad. Sci. USA 35, 537–545 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. W. Mackey,Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    MATH  Google Scholar 

  16. T. D. Newton and E. P. Wigner, “Localized states for elementary systems,”Rev. Mod. Phys. 21, 400–406 (1949).

    Article  ADS  Google Scholar 

  17. E. Prugovecki, “Information theoretical aspects of quantum measurements,”Int. J. Theor. Phys. 16, 321–331 (1977).

    Article  MathSciNet  Google Scholar 

  18. F. E. Schroeck Jr.,Quantum Mechanics on Phase Space (Kluwer Academic, Dordrecht, 1996).

    MATH  Google Scholar 

  19. V. S. Varadarajan,Geometry of Quantum Theory, Vol. I (Van Nostrand, Princeton, 1968).

    MATH  Google Scholar 

  20. A. S. Wightman, “On the localizability of quantum mechanical systems”Rev. Mod. Phys. 34, 845–872 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Woodhouse,Geometric Quantization (Oxford University Press, Oxford, 1980; 2nd edn., 1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeck, F.E. Symmetry in quantum theory: Implications for the convexity formalism, the measurement problem, and hidden variables. Found Phys 27, 1375–1396 (1997). https://doi.org/10.1007/BF02551518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551518

Keywords

Navigation