Advertisement

Foundations of Physics

, Volume 27, Issue 8, pp 1179–1209 | Cite as

The representations and coupling coefficients of su(n); application to su(4)

  • D. J. Rowe
  • J. Repka
Part II. Invited Papers Dedicated to Lawrence Biedenharn

Abstract

Analytical expressions for the matrices and an explicit algorithm for computing Clebsch-Gordan coupling coefficients are given forsu(4) in au(3)-coupled basis as an example of the construction for anysu(n) in au(n−1) basis. The results areinduced from the known results foru(3) by means of the vector-coherent-state (VCS) theory of induced representations. The important recent result that makes this possible is the discovery that a complete set of shift tensors for the finitedimensional representations of reductive Lie algebras can be induced, by VCS methods, from those of suitably defined subalgebras.

Keywords

Matrix Element High Weight Invariant Subspace Coupling Coefficient Shift Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Rowe,J. Math. Phys. 25, 2662 (1984). D. J. Rowe, G. Rosenteel, and R. Carr,J. Phys. A: Math. Gen. 17, L399 (1984); D. J. Rowe, G. Rosensteel, and R. Gilmore,J. Math. Phys. 26, 2787 (1985). K. T. Hecht,The Vector Coherent State Method and Its Application to Problems of Higher Symmetries (Springer, Berlin, 1987).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    D. J. Rowe and J. Repka,J. Math. Phys. 32, 2614 (1991).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D. J. Rowe and J. Repka,J. Math. Phys. 36, 2008 (1995).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    D. J. Rowe and J. Repka,J. Math. Phys. (in press).Google Scholar
  5. 5.
    E. P. Wigner,Group Theory (Academic, New York, 1959).zbMATHGoogle Scholar
  6. 6.
    M. Moshinsky,Rev. Mod. Phys. 34, 813 (1962).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    K. T. Hecht,Nucl. Phys. 62, 1 (1965).CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. P. Draayer and Y. Akiyama,J. Math. Phys. 14, 1904 (1973); Y. Akiyama and J. P. Draayer,Comput. Phys. Commun. 5 405 (1973).CrossRefMathSciNetGoogle Scholar
  9. 9.
    E. P. Wigner,Gruppentheorie (Vieweg, Braunschweig, 1931). C. Eckart,Rev. Mod. Phys. 2, 305 (1930); A. P. Stone,Proc. Camb. Phys. Soc. 57, 460 (1961).Google Scholar
  10. 10.
    A. R. Edmonds,Proc. R. Soc. London A268, 436 (1963).Google Scholar
  11. 11.
    G. E. Baird and L. C. Biedenharn,J. Math. Phys. 4, 1449 (1963),5, 1730 (1964). L. C. Biedenharn, A. Giovannini, and J. D. Louck,Commun. Math. Phys. 8, 691 (1967).CrossRefMathSciNetGoogle Scholar
  12. 12.
    L. C. Biedenharn and J. D. Louck,Commun. Math. Phys. 8, 89 (1968). J. D. Louck,Am. J. Phys. 38, 3 (1970). J. D. Louck and L. C. Biedenharn,J. Math. Phys. 11, 2368 (1970).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    K. T. Hecht, R. Le Blanc, and D. J. Rowe,J. Phys. A 20, 2241 (1987).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    I. M. Gel'fand and M. L. Tseitlin,Dokl. Akad. Nauk. 71, 825, 1017 (1950).Google Scholar
  15. 15.
    Orthogonalization of a set of nonorthogonal vectors can be carried out by the well-known Gram-Schmidt method or, more easily, by the methods of D. J. Rowe,J. Math. Phys. 10, 1774 (1969).CrossRefMathSciNetGoogle Scholar
  16. 16.
    K. T. Hecht and S. C. Pang,J. Math. Phys. 10, 1571 (1969).CrossRefMathSciNetGoogle Scholar
  17. 17.
    F. Iachello and A. Arima,The Interacting Boson Model (Cambridge University Press, Cambridge, 1987). J. P. Elliott and J. A. Evans,Phys. Lett. 101B, 216 (1981).Google Scholar
  18. 18.
    D. J. Milliner,J. Math. Phys. 19, 1513 (1978).CrossRefADSGoogle Scholar
  19. 19.
    H. de Guise and D. J. Rowe,J. Math. Phys. 36, 6991 (1995); and in preparation.CrossRefADSGoogle Scholar
  20. 20.
    D. J. Rowe,Rep. Prog. Phys. 48, 1419 (1985).CrossRefADSGoogle Scholar
  21. 21.
    D. J. Rowe, R. Le Blanc, and J. Repka,J. Phys. A 22, L309 (1989); D. J. Rowe, M. G. Vassanji, and J. Carvalho,Nucl. Phys. A 504, 76 (1989).CrossRefADSGoogle Scholar
  22. 22.
    D. J. Rowe,J. Math. Phys. 35, 3163 (1994), D. J. Rowe and K. T. Hecht,J. Math. Phys. 36, 4711 (1995).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    J. D. Vergados,Nucl. Phys. A 111, 681 (1968).ADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • D. J. Rowe
    • 1
  • J. Repka
    • 2
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations