Advertisement

Foundations of Physics

, Volume 27, Issue 8, pp 1139–1157 | Cite as

Supermultiplicity and the relativistic Coulomb problem with arbitrary spin

  • M. Moshinsky
  • A. del Sol Mesa
  • V. Riquer
Part II. Invited Papers Dedicated to Lawrence Biedenharn

Abstract

The Hamiltonian for n relativistic electrons without interaction but in a Coulomb potential is well known. If in this Hamiltonian we take r u =r′, P u =P′ with u=1,2,..., n, we obtain a one-body problem in a Coulomb field, but the appearance of n of the α u , u=1,..., n, each of which corresponds to spin\(\tfrac{1}{2}\), indicates that we may have spins up to (n/2). We analyze this last problem first by denoting the 4×4 matrices α, β as direct products of 2×2 matrices which correspond to the ordinary spin, and a new concept, also related to the SU(2) group, which we call sign spin. In this new notation our problem depends on the sixteen generators of a U(4) group reduced along the chain Û(2)⊗Ŭ(2) sub-groups associated with the ordinary and sign spins. We now make a change of variables in our Hamiltonian so a term ε related to the frequency ω of an oscillator, which will be our variational parameter, appears in it, and later construct the full states of the problem with a harmonic oscillator of frequency 1 and ordinary and sign spin parts. Finally we obtain the matrix representation of our Hamiltonian with respect to the states mentioned and discuss the energy spectra of the problem where the partition {h} representing the irrep of U(4) and j the total angular momentum, take the values {h}=[1], j=\(\tfrac{1}{2}\); {h}=[11], j=0; {h}=[2], j=0.

Keywords

Harmonic Oscillator Coulomb Potential Total Angular Momentum Nonrelativistic Limit Full State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. M. Dirac,The principles of Quantum Mechanics, (Oxford: Clarendon, Oxford, 1959), 4th ed., pp. 252–275.Google Scholar
  2. 2.
    P. A. M. Dirac,Proc. R. Soc. London A 155, 447 (1936). M. Fierz and W. Pauli,Proc. R. Soc. London A 173, 211 (1939). V. Bargmann and E. P. Wigner,Proc. Nat. Acad. Sci. USA 34, 211 (1948). N. Kemmer,Proc. R. Soc. London A, 73 (1939). P. M. Mathews and B. Vijayalakshmi,J. Math. Phys. 25, 1080 (1984). H. J. Bhabha,Rev. Mod. Phys. 21, 451 (1949). R. A. Krajcik and M. Nieto,Am. J. Phys. 45, 818 (1977). S. Weinberg,Phys. Rev. B 133, 1318 (1964). W. Fushchich, A. G. Nikitin, and W. M. Susloperov,Nuovo Cimento A 87, 415 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    M. Moshinsky and A. del Sol Mesa,J. Phys. A: Math. Gen. 29, 4217 (1996).CrossRefADSzbMATHGoogle Scholar
  4. 4.
    M. Moshinsky and Yu. F. Smirnov,J. Phys. A: Math. Gen. 29, 6027 (1996).CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    A. O. Barut and S. Komy,Fort. Phys. 33, 6 (1985), A. O. Barut and G. L. Strobel,Few-Body Systems 1, 167 (1986).MathSciNetGoogle Scholar
  6. 6.
    M. Moshinsky and Yu. Smirnov, inSymmetry in Science IX, B. Gruber, ed. (Plenum, New York, 1997).Google Scholar
  7. 7.
    E. P. Wigner,Phys. Rev. 51, 106 (1937).CrossRefADSzbMATHGoogle Scholar
  8. 8.
    M. Moshinsky and J. G. Nagel,Phys. Lett. 5, 173 (1963).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    M. Moshinsky and C. Quesne,Phys. Lett. B 29, 482 (1971);J. Math. Phys. 11, 1631 (1970).CrossRefADSGoogle Scholar
  10. 10.
    M. Moshinsky,J. Math. Phys. 7, 691 (1966).CrossRefMathSciNetzbMATHADSGoogle Scholar
  11. 11.
    M. Brunet and M. Resnikoff,J. Math. Phys. 11, 1474 (1970). K. T. Hecht and Sing Chin Pang,J. Math. Phys. 10, 1571 (1969). J. P. Draayer,J. Math. Phys. 11, 3225 (1970).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    M. Moshinsky and Yu. F. Smirnov,The Harmonic Oscillator in Modern Physics (Harwood, New York, 1996), pp. 1, 3, 5.zbMATHGoogle Scholar
  13. 13.
    M. E. Rose,Elementary Theory of Angular Momentum (Wiley, New York, 1957), p. 117, formula (6.21) and pp. 85–90.zbMATHGoogle Scholar
  14. 14.
    M. Moshinsky and C. Quesne,Ann. Phys. (N.Y) 148, 462 (1983).CrossRefADSzbMATHGoogle Scholar
  15. 15.
    P. Kramer and M. Moshinsky,Group Theory and Its Applications, Vol. 1, E. M. Loebl, ed. (Academic, New York, 1968), pp. 403–421.Google Scholar
  16. 16.
    T. Brody and M. Moshinsky,Tables of Transformation Brackets (Gordon & Breach, New York, 1967), pp. 125–175.Google Scholar
  17. 17.
    L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 485–488.Google Scholar
  18. 18.
    M. Moshinsky and A. del Sol Mesa.Can. J. Phys. 72, 453 (1994).ADSzbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. Moshinsky
    • 1
  • A. del Sol Mesa
    • 1
  • V. Riquer
    • 1
  1. 1.Instituto de FísicaUNAMMéxicoMéxico

Personalised recommendations