# Supermultiplicity and the relativistic Coulomb problem with arbitrary spin

- 55 Downloads
- 2 Citations

## Abstract

The Hamiltonian for n relativistic electrons without interaction but in a Coulomb potential is well known. If in this Hamiltonian we take r _{′} ^{u} =r′, P _{′} ^{u} =P′ with u=1,2,..., n, we obtain a one-body problem in a Coulomb field, but the appearance of n of the α_{ u }, u=1,..., n, each of which corresponds to spin\(\tfrac{1}{2}\), indicates that we may have spins up to (n/2). We analyze this last problem first by denoting the 4×4 matrices α, β as direct products of 2×2 matrices which correspond to the ordinary spin, and a new concept, also related to the SU(2) group, which we call sign spin. In this new notation our problem depends on the sixteen generators of a U(4) group reduced along the chain Û(2)⊗Ŭ(2) sub-groups associated with the ordinary and sign spins. We now make a change of variables in our Hamiltonian so a term ε related to the frequency ω of an oscillator, which will be our variational parameter, appears in it, and later construct the full states of the problem with a harmonic oscillator of frequency 1 and ordinary and sign spin parts. Finally we obtain the matrix representation of our Hamiltonian with respect to the states mentioned and discuss the energy spectra of the problem where the partition {h} representing the irrep of U(4) and j the total angular momentum, take the values {h}=[1], j=\(\tfrac{1}{2}\); {h}=[11], j=0; {h}=[2], j=0.

## Keywords

Harmonic Oscillator Coulomb Potential Total Angular Momentum Nonrelativistic Limit Full State## Preview

Unable to display preview. Download preview PDF.

## References

- 1.P. A. M. Dirac,
*The principles of Quantum Mechanics*, (Oxford: Clarendon, Oxford, 1959), 4th ed., pp. 252–275.Google Scholar - 2.P. A. M. Dirac,
*Proc. R. Soc. London A***155**, 447 (1936). M. Fierz and W. Pauli,*Proc. R. Soc. London A***173**, 211 (1939). V. Bargmann and E. P. Wigner,*Proc. Nat. Acad. Sci. USA***34**, 211 (1948). N. Kemmer,*Proc. R. Soc. London A*, 73 (1939). P. M. Mathews and B. Vijayalakshmi,*J. Math. Phys.***25**, 1080 (1984). H. J. Bhabha,*Rev. Mod. Phys.***21**, 451 (1949). R. A. Krajcik and M. Nieto,*Am. J. Phys.***45**, 818 (1977). S. Weinberg,*Phys. Rev. B***133**, 1318 (1964). W. Fushchich, A. G. Nikitin, and W. M. Susloperov,*Nuovo Cimento A***87**, 415 (1985).ADSCrossRefGoogle Scholar - 3.M. Moshinsky and A. del Sol Mesa,
*J. Phys. A: Math. Gen.***29**, 4217 (1996).CrossRefADSzbMATHGoogle Scholar - 4.M. Moshinsky and Yu. F. Smirnov,
*J. Phys. A: Math. Gen.***29**, 6027 (1996).CrossRefADSMathSciNetzbMATHGoogle Scholar - 5.A. O. Barut and S. Komy,
*Fort. Phys.***33**, 6 (1985), A. O. Barut and G. L. Strobel,*Few-Body Systems***1**, 167 (1986).MathSciNetGoogle Scholar - 6.M. Moshinsky and Yu. Smirnov, in
*Symmetry in Science IX*, B. Gruber, ed. (Plenum, New York, 1997).Google Scholar - 7.
- 8.
- 9.M. Moshinsky and C. Quesne,
*Phys. Lett. B***29**, 482 (1971);*J. Math. Phys.***11**, 1631 (1970).CrossRefADSGoogle Scholar - 10.
- 11.M. Brunet and M. Resnikoff,
*J. Math. Phys.***11**, 1474 (1970). K. T. Hecht and Sing Chin Pang,*J. Math. Phys.***10**, 1571 (1969). J. P. Draayer,*J. Math. Phys.***11**, 3225 (1970).CrossRefMathSciNetADSGoogle Scholar - 12.M. Moshinsky and Yu. F. Smirnov,
*The Harmonic Oscillator in Modern Physics*(Harwood, New York, 1996), pp. 1, 3, 5.zbMATHGoogle Scholar - 13.M. E. Rose,
*Elementary Theory of Angular Momentum*(Wiley, New York, 1957), p. 117, formula (6.21) and pp. 85–90.zbMATHGoogle Scholar - 14.
- 15.P. Kramer and M. Moshinsky,
*Group Theory and Its Applications*, Vol. 1, E. M. Loebl, ed. (Academic, New York, 1968), pp. 403–421.Google Scholar - 16.T. Brody and M. Moshinsky,
*Tables of Transformation Brackets*(Gordon & Breach, New York, 1967), pp. 125–175.Google Scholar - 17.L. I. Schiff,
*Quantum Mechanics*, 3rd ed. (McGraw-Hill, New York, 1968), pp. 485–488.Google Scholar - 18.