Advertisement

Foundations of Physics

, Volume 27, Issue 8, pp 1123–1138 | Cite as

Quasi-continuous symmetries of non-lie type

  • Andrei Ludu
  • Walter Greiner
Part II. Invited Papers Dedicated to Lawrence Biedenharn

Abstract

We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the noncommutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrödinger equation for a free particle is investigated in such a noncommutative plane and a connection with anyonic statistics is found.

Keywords

Commutator Relation Quantum Group Free Particle Discrete Symmetry Infinitesimal Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Drinfeld,Proceedings Intern. Congress of Mathematicians, Berkeley, California, A. M. Gleason, ed. (AMS, Providence, Rhode Island, 1986), p. 798. M. Jimbo,Lett. Math. Phys. 10, 63 (1985).Google Scholar
  2. 2.
    E. K. Sklyanin,Funct. Anal. Appl. 16, 262 (1982); P. P. Kulish and N. Reshetikhin,J. Sov. Math. 23, 2435 (1983).MathSciNetGoogle Scholar
  3. 3.
    L. C. Biedenharn,J. Phys. A: Math. Gen. 22, L873 (1990). A. J. Macfarlane,J. Phys. A: Math. Gen. 22, 4581 (1990). Y. J. Ng,J. Phys. A: Math. Gen. 23, 1023–1027 (1990).CrossRefMathSciNetGoogle Scholar
  4. 4.
    Z. Chang,Phys. Rep. 262, 137–225 (1995). C. de Concini and C. Procesi, inD-modules, Representation Theory and Quantum Groups, G. Zampieri and A. D'Agnolo, eds. (Springer, New York, 1993).CrossRefMathSciNetGoogle Scholar
  5. 5.
    L. H. Kauffman,Knots and Physics, (World Scientific, Singapore, 1991).zbMATHGoogle Scholar
  6. 6.
    J. Wess and B. Zumino, “Covariant differential calculus on the quantum hyperplane,” CERN-TH-5697/90, LAPP-TH-284/90. S. L. Woronowicz,Commun. Math. Phys. 111, 613 (1987);122, 125 (1989).Google Scholar
  7. 7.
    S. Chaturvedi, R. Jagannathan, R. Sridhar, and V. Srinivasan,J. Phys. A: Math. Gen. 26, L105 (1993).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    H. Exton,q-Hypergeometric Functions and Applications (Horwood, Chichester, 1983).zbMATHGoogle Scholar
  9. 9.
    A. Connes,Geometrie Non-Commutative (inter Editions, 1990). Yu. I. Manin,Commun. Math. Phys. 123, 163 (1989).Google Scholar
  10. 10.
    A. Lerda and S. Sciuto,Nucl. Phys. B 401, 613 (1993).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    F. Bagarello,J. Phys. A: Math. Gen. 29, 565 (1996).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Andrei Ludu
    • 1
  • Walter Greiner
    • 1
  1. 1.Institut für Theoretische Physik der J. W. Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations