Skip to main content
Log in

Superrelativity as an element of a final theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The ordinary quantum theory points out that general relativity (GR) is negligible for spatial distances up to the Planck scale lP=(hG/c3)1/2∼10−33cm. Consistency in the foundations of the quantum theory requires a “soft” spacetime structure of the GR at essentially longer length. However, for some reasons this appears to be not enough. A new framework (“superrelativity”) for the desirable generalization of the foundation of quantum theory is proposed. A generalized nonlinear Klein-Gordon equation has been derived in order to shape a stable wave packet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dirac,Proc. Roy. Soc. A 114, 243 (1927).

    ADS  Google Scholar 

  2. P. Dirac,Proc. Roy. Soc. A 117, 610 (1928).

    ADS  Google Scholar 

  3. E. Schrödinger,Naturwissenschaften 14, 664 (1926).

    Article  Google Scholar 

  4. E. Schrödinger,Ann. Phys. 79, 361 (1926).

    Google Scholar 

  5. E. Schrödinger,Ann. Phys. 79, 489 (1926).

    Google Scholar 

  6. P. Leifer, “Dynamics of the Spin Coherent State,” Ph.D., Thesis, Institute for Low Temperature Physics and Engineering of the Ukrainian Academy of Science, Kharkov, 1990.

    Google Scholar 

  7. P. Leifer, “On a nonlinear nonperturbative modification of quantum mechanics,” preprint TAUP 2262-95.

  8. L. Horwitz and P. Leifer, “The semiclassical limit from the geometry of the projective state space,” preprint TAUP 2277-95, submitted for publication.

  9. L. P. Horwitz and P. Leifer, “Stable wave packet as a model of an elementary particle,” preprint TAUP 2302-95.

  10. Y. Ne’eman,Phys. Lett. A,186, 5 (1994).

    Article  ADS  Google Scholar 

  11. P. Leifer, “Nonlinear modification of quantum mechanics,” preprint hep-th/9702160, submitted for publication.

  12. D. Bohm,Causality and Chance in Modern Physics (London, 1957).

  13. A. M. Perelomov,Generalized Coherent States and Their Applications (Springer, New York, 1986).

    MATH  Google Scholar 

  14. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. II, (Interscience, New York-London-Sydney, 1969).

    MATH  Google Scholar 

  15. R. Cirelli, A. Mania’, and L. Pizzocchero,Int. J. Mod. Phys. 6 (12), 2133 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Weinberg,Ann. Phys. (N.Y.) 194, 336 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Weinberg,Phys. Rev. Lett. 62, 485 (1989).

    Article  ADS  Google Scholar 

  18. A. Shapere and F. Wilezek,J. Fluid Mech. 198, 557 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Born and E. Wolf,Principles of Optics (Pergamon, New York, 1964).

    Google Scholar 

  20. L. de Broglie,Com. Rend. 180, 498 (1925).

    Google Scholar 

  21. Janke-Emde-Lösch,Tafeln Höherer Funktionen (Stuttgart, 1960).

  22. Yu. P. Rubakov and B. Saha,Found. Phys. 25 (12), 1723 (1995).

    Article  Google Scholar 

  23. L. P. Horwitz,Found. Phys. 22, 491 (1992).

    Article  Google Scholar 

  24. M. M. Lam and C. Dewdney,Found. Phys. 24(1), 3 (1994).

    Article  MathSciNet  Google Scholar 

  25. M.-T. Jeakel and S. Reynaud,Phys. Rev. Lett. 76, 2407 (1996).

    Article  ADS  Google Scholar 

  26. K. R. W. Jones,Ann. Phys. 233, 295 (1994).

    Article  ADS  Google Scholar 

  27. Y. Ne’eman,Found. Phys. 16, 361 (1986).

    Article  MathSciNet  Google Scholar 

  28. A. R. Marlow,Int. J. Theor. Phys. 23(9), 863 (1984).

    Article  MathSciNet  Google Scholar 

  29. J. Polchinski,Phys. Rev. Lett. 66, 397 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  30. N. Gisin,Phys. Lett. A 143, 1 (1990).

    Article  ADS  Google Scholar 

  31. M. Czachor,Phys. Rev. A 53, 1310 (1996).

    Article  ADS  Google Scholar 

  32. Y. Aharonov, J. Anandan, and L. Vaidman,Phys. Rev. A 47, 4616 (1993).

    Article  ADS  Google Scholar 

  33. Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).

    Article  ADS  Google Scholar 

  34. Y. Aharonov, J. Anandan, and L. Vaidman,Found. Phys. 26, 117 (1996).

    Article  MathSciNet  Google Scholar 

  35. N. Rosen,Found. Phys. 24, 1563 (1994).

    Article  MathSciNet  Google Scholar 

  36. N. Rosen,Found. Phys. 24, 1689 (1994).

    Article  MathSciNet  Google Scholar 

  37. P. Dirac,Proc. Roy. Soc. A 268, 57 (1962).

    ADS  MathSciNet  Google Scholar 

  38. J. K. Perring and T. H. Skyrme,Nucl. Phys. 31, 550 (1962).

    Article  MathSciNet  Google Scholar 

  39. E. Fischbachet al., Phys. Rev. D 52, 5417 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leifer, P. Superrelativity as an element of a final theory. Found Phys 27, 261–285 (1997). https://doi.org/10.1007/BF02550454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550454

Keywords

Navigation