Skip to main content
Log in

Mathematical theory of radiation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we present an informal review of our recent work whose goal is to develop a mathematical theory of the physical phenomenon of emission and absorption of radiation by systems of nonrelativistic matter such as atoms and molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aguilar, and J.-M. Combes, “A class of analytic perturbations for one-body Schrödinger Hamiltonians,”Commun. Math. Phys. 22, 269–279 (1971).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Arai, “On a model of a harmonic oscillator coupled to a quantized, massless, scalar field, I,”J. Math. Phys. 22, 2539–2548 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Arai, “On a model of a harmonic oscillator coupled to a quantized, massless, scalar field, II,”J. Math. Phys. 22, 2549–2552 (1981).

    Article  ADS  MATH  Google Scholar 

  4. A. Arai, “Spectral analysis of a quantum harmonic, oscillator coupled to infinitely many scalar bosons,”J. Math. Anal. Appl. 140, 270–288 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Bach, J. Fröhlich, and I. M. Sigal, “Mathematical theory of nonrelativistic matter and radiation,”Lett. Math. Phys. 34, 183–201 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. V. Bach, J. Fröhlich, and I. M. Sigal, “Quantum electrodynamics of confined nonrelatistic particles,”Adv. Math. (to appear).

  7. V. Bach, J. Fröhlich, and I. M. Sigal, “Renormalization group analysis of spectral problems in quantum field theory,”Adv. Math. (to appear).

  8. V. Bach, J. Fröhlich, and I. M. Sigal, “Mathematical theory of nonrelativistic matter and radiation,” in preparation.

  9. V. Bach, J. Fröhlich, I. M. Sigal, and A. Soffer, “Positive commutators and spectrum of nonrelativistic QED,” 1996, preprint, Toronto.

  10. E. Balslev, and J.-M. Combes, “Spectral properties, of Schrödinger operators with dilation analytic potentials,”Commun. Math. Phys. 22, 280–294 (1971).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. H. A. Bethe, “The electromagnetic, shift of energy levels,”Phys. Rev. 72, 339 (1947).

    Article  ADS  Google Scholar 

  12. H. A. Betle, and E. Salpeter,Quantum Mechanics of One- and Two-Electron Atoms (Springer, Heidelberg, 1957).

    Google Scholar 

  13. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,Photons and Atoms—Introduction to Quantum Electrodynamics, (Wiley, New York, 1991).

    Google Scholar 

  14. H. Cycon, “Resonances defined by modified dilations,”Helv. Phys. Acta 53, 969–981 (1985).

    MathSciNet  Google Scholar 

  15. R. Froese, and I. Herbst, “A new proof of the Mourre estimate,”Duke Math J. 49, 1075–1085 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fröhlich, “On the infrared problem in a model of scalar electrons and massless scalar bosons,”Ann. Inst. H. Poincaré 19, 1–103 (1973).

    Google Scholar 

  17. C. Gérard, “Distortion analyticity forN-particle Hamiltonians,”Helv. Phys. Acta 66, 216–225 (1993).

    MathSciNet  MATH  Google Scholar 

  18. J. Glimm, and A. Jaffe, “Theλ(ϕ 4)2 quantum field theory without cutoffs: II. The field operators and the approximate vacuum,”Ann. Math. 91, 362–401 (1970).

    Article  MathSciNet  Google Scholar 

  19. J. Glimm, and A. Jaffe,Constructive Quantum Field Theory: Selected Papers. (Birkhäuser, Boston, 1985).

    MATH  Google Scholar 

  20. L. Horwitz, and I. M. Sigal, “On mathematical model for nonstationary physical systems,”Helv. Phys. Acta 51, 685–715 (1978).

    MathSciNet  Google Scholar 

  21. M. Hübner and H. Spohn, “Atom interacting with photons: ann-body, Schrödinger problem,” preprint, 1994.

  22. M. Hübner, and H. Spohn, “Spectral properties of the spin-boson Hamiltonian,”Ann. Inst. H. Poincaré 62, 289–323 (1995).

    MATH  Google Scholar 

  23. M. Hübner, and H. Spohn, “Radiative decay: Nonperturbative approaches,”Rev. Math. Phys. 7, 363–387 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Hunziker, “Distortion analyticity and molecular resonance, curves,”Ann. Inst. H. Poincaré 45, 339–358 (1986).

    MathSciNet  MATH  Google Scholar 

  25. W. Hunziker, “Resonances, metastable states and exponential decay laws in perturbation theory,”Commun. Math. Phys. 132, 177–188 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. Jaksic, and C. A. Pillet, “On a model for quantum friction, I: Fermi’s Golden Rule and dynamics at zero temperature,”Ann. Inst. H. Poincaré 62, 47 (1995).

    MathSciNet  MATH  Google Scholar 

  27. V. Jaksic, and C.-A. Pillet, “On a model for quantum friction, II Fermi’s Golden Rule and dynamics at positive temperature,”Commun. Math. Phys. 176, 619 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Jaksic, and C.-A. Pillet, “On a model for quantum, friction, III: Return to equilibrium,”Comm. Math. Phys. 178, 627 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. C. King, “Exponential decay near resonance, without analyticity,”Lett. Math. Phys. 23, 215–222 (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. C. King, “Scattering theory of a two-state atom interacting with a massless nonrelativistic quantized scalar field,”Commun. Math. Phys. 165, 569–594 (1994).

    Article  ADS  MATH  Google Scholar 

  31. C. King and R. Waxler, “On the spontaneous emission of light from an atom with finite mass.” preprint, 1995.

  32. R. Lavine, “Absolute continuity of Hamiltonian operators with repulsive potentials,”Proc. Am. Math. Soc. 22, 55–60 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators,”Commun. Math. Phys. 78, 391–408 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. T. Okamoto, and K. Yajima, “Complex scaling technique in nonrelativistic QED,”Ann. Inst. H. Poincaré 42, 311–327 (1985).

    MathSciNet  MATH  Google Scholar 

  35. P. Perry, I. M. Sigal, and B. Simon, “Spectral analysis ofn-body Schrödinger operators,”Ann. Math. 114, 519–567 (1981).

    Article  MathSciNet  Google Scholar 

  36. J. J. Sakurai,Advanced Quantum Mechanics, (Addison-Wesley, Reading, 1987).

    Google Scholar 

  37. I. M. Sigal, “Complex transformation method and resonances in one-body quantum systems,”Ann. Inst. H. Poincaré,41, 333 (1984).

    MathSciNet  MATH  Google Scholar 

  38. I. M. Sigal, “Geometrical theory of resonances in multipartile systems,” inIXth International Congress on Mathematical Physics (Swansea, 1988), (Adam Hilger, Bristol, 1989).

    Google Scholar 

  39. B. Simon, “Resonances inn-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory,”Ann. Math. 97, 247–274 (1973).

    Article  Google Scholar 

  40. B. Simon, “The definition of molecular resonance curves by the method of exterior complex scaling,”Phys. Lett. A 71, 211–214 (1979).

    Article  ADS  Google Scholar 

  41. H. Spohn, “Ground state(s) of the spin-boson Hamiltonian,”Commun. Math. Phys. 123, 277–304 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Larry Horwitz on the occasion of his 65th birthday.

Research supported by DFS 288 and by NSF Phy 90-10433A02.

Research supported by SNF.

Research supported by NSERC Grant NA 7901.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, V., Fröhlich, J. & Sigal, I.M. Mathematical theory of radiation. Found Phys 27, 227–237 (1997). https://doi.org/10.1007/BF02550452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550452

Keywords

Navigation