Skip to main content
Log in

Magnetoresonances on a lasso graph

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider a charged spinless quantum particle confined to a graph consisting of a loop to which a halfline lead is attached; this system is placed into a homogeneous magnetic field perpendicular to the loop plane. We derive the reflection amplitude and show that there is an infinite ladder of resonances; analyzing the resonance pole trajectories, we show that half of them turn into true embedded eigenvalues provided the flux through the loop is an integer or half-integer multiple of the flux unit hc/e. We also describe a general method to solve the scattering problem on graphs of which the present model is a simple particular case. Finally, we discuss ways in which a state localized initially at the loop decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Adamyan, “Scattering matrices for microschemes,”Oper. Theory: Adv. Appl. 59, 1–10 (1992).

    MathSciNet  Google Scholar 

  2. S. Albeverio, F. Gesztesy, R. Høgh-Krohn, and H. Holden,Solvable Models in Quantum Mechanics (Springer, Heidelberg 1988).

    MATH  Google Scholar 

  3. J. P. Antoine, P. Exner, P. Šeba, and J. Shahani, “A mathematical model of heavy-quarkonia decays,”Ann. Phys. 233, 1–16 (1944).

    ADS  Google Scholar 

  4. Y. Avishai, and J. M. Luck, “Quantum percolation and ballistic conductance on a lattice of wires,”Phys. Rev. B 45, 1074–1095 (1992).

    Article  ADS  Google Scholar 

  5. J. E. Avron, P. Exner, and Y. Last, “Periodic Schrödinger operators with large gaps and Wannier-Stark ladders,”Phys. Rev. Lett. 72, 896–899 (1994).

    Article  ADS  MATH  Google Scholar 

  6. J. E. Avron, A. Raveh, and B. Zur, “Adiabatic transport in multiply connected systems,”Rev. Mod. Phys. 60, 873–915 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Bellissard, A. Formoso, R. Lima, and D. Testard, “Quasi-periodic interactions with a metal-insulator transition,”Phys. Rev. B 26, 3024–3030 (1982).

    Article  ADS  Google Scholar 

  8. M. Büttiker, “Small normal-metal loop coupled to an electron reservoir,”Phys. Rev. B 32, 1846–1849 (1985).

    Article  ADS  Google Scholar 

  9. F. Delyon, B. Simon, and Souillard, “From power pure point to continuous spectrum in disordered systems,”Ann. Inst. H. Poincaré A 42, 283–309 (1985).

    MathSciNet  MATH  Google Scholar 

  10. P. Exner,Open Quantum Systems and Feynman Integrals (Reidel, Dordrecht, 1984).

    Google Scholar 

  11. P. Exner, “Lattice Kronig-Penney models,”Phys. Rev. Lett. 74, 3503–3506 (1995).

    Article  ADS  Google Scholar 

  12. P. Exner, “Contact interactions on graph superlattices,”J. Phys. A 29, 87–102 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. P. Exner, “Weakly coupled states on branching graphs”Lett. Math. Phys. 38, 313–320 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. P. Exner, “A duality between Schrödinger operators on graphs and certain Jacobi matrices,”Ann. Inst. H. Poincaré 64 (1997), to appear.

  15. P. Exner, “A solvable model of two-channel scattering,”Helv. Phys. Acta 64, 592–609, (1991).

    MathSciNet  Google Scholar 

  16. P. Exner and R. Gawlista, “Band spectra of rectangular graph superlattices,”Phys. Rev. B 53, 7275–7286 (1996).

    Article  ADS  Google Scholar 

  17. P. Exner and P. Šeba, “Free quantum motion on a branching graph,”Rep. Math. Phys. 28, 7–26 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. Exner and F. Šerešová, “Appendix resonances on a simple graph,”J. Phys. A 27, 8269–8278 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. Gaveau and L. S. Schulman, “Limited quantum decay,”J. Phys. A 28, 7359–7374 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. N. I. Gerasimenko and B. S. Pavlov, “Scattering problem on noncompact graphs,”Teor. Mat. Fiz. 74, 345–359 (1988) (in Russian).

    MathSciNet  Google Scholar 

  21. F. Gesztesy and H. Holden, “A new class of solvable models in quantum mechanics describing point interactions on the line,”J. Phys. A 20, 5157–5177 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Gesztesy, H. Holden, and W. Kirsch, “On energy gaps in a new type of analytically solvable model in quantum mechanics,”J. Math. Anal. Appl. 134, 9–29 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Gratus, C. J. Lambert, S. J. Robinson, and R. W. Tucker, “Quantum mechanics on graphs,”J. Phys. A 27, 6881–6892 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. L. P. Horwitz, J. A. LaVita, and J. P. Marchand, “The inverse decay problem,”J. Math. Phys. 12, 2537–2543 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. L. P. Horwitz and J.-P. Marchand, “The decay scattering system,”Rocky Mts. J. Math. 1, 225–253 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. P. Horwitz and J.-P. Marchand, “Unitary sum rule and the time evolution of neutralK-mesons,”Helv. Phys. Acta 42, 801–807 (1969).

    MathSciNet  Google Scholar 

  27. L. P. Horwitz and J.-P. Marchand, “Formal scattering treatment of the neutralK meson system,”Helv. Phys. Acta 42, 1039–1054 (1969).

    MathSciNet  Google Scholar 

  28. L. P. Horwitz and I. M. Sigal, “On a mathematical model for nonstationary physical system,”Helv. Phys. Acta 51, 685–715 (1978).

    MathSciNet  Google Scholar 

  29. J. S. Howland, “Puiseux series for resonances at embedded eigenvalues,”Pacific J. Math. 55, 157–176 (1974).

    MathSciNet  MATH  Google Scholar 

  30. A. M. Jaynnavar and P. Singha Deo, “Persistent current and conductance of metal loop connected to electron reservoir,”Phys. Rev. B 49, 13685–13690 (1994).

    Article  ADS  Google Scholar 

  31. P. Phariseau, “The energy spectrum of an amorphous substance,”Physica 26, 1185–1191 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Reed and B. Simon,Methods of Modern Mathematical Physics, I. Functional Analysis, IV. Analysis of Operators (Academic, New York, 1972, 1978).

    Google Scholar 

  33. K. Ruedenberg and C. W. Scherr, “Free-electron network model for conjugated systems, I. Theory,”J. Chem. Phys. 21, 1565–1581 (1953).

    Article  ADS  Google Scholar 

  34. L. Sadun and J. E. Avron, “Adiabatic curvature and theS-matrix,”Commun. Math. Phys. 181, 685–702 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. B. Simon, “Almost periodic Schrödinger operators: a review,”Adv. Appl. Math. 3, 463–490 (1982).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exner, P. Magnetoresonances on a lasso graph. Found Phys 27, 171–190 (1997). https://doi.org/10.1007/BF02550448

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550448

Keywords

Navigation