Skip to main content
Log in

Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Gyrogroup theory and its applications is introduced and explored, exposing the fascinating interplay between Thomas precession of special relativity theory and hyperbolic geometry. The abstract Thomas precession, called Thomas gyration, gives rise to grouplike objects called gyrogroups [A, A. Ungar, Am. J. Phys.59, 824 (1991)] the underlying axions of which are presented. The prefix gyro extensively used in terms like gyrogroups, gyroassociative and gyrocommutative laws, gyroautomorphisms, and gyrosemidirect products, stems from their underlying abstract Thomas gyration. Thomas gyration is tailor made for hyperbolic geometry. In a similar way that commutative groups underlie vector spaces, gyrocommutative gyrogroups underlie gyrovector spaces. Gyrovector spaces, in turn, provide a most natural setting for hyperbolic geometry in full analogy with vector spaces that provide the setting for Euclidean geometry. As such, their applicability to relativistic physics and its spacetime geometry is obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group.”Found Phys. Lett. 1, 57–89 (1988).

    Article  MathSciNet  Google Scholar 

  2. Abraham A. Ungar, “The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities.”Appl. Math. Lett. 1, 403–405 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  3. Arlan Ramsay and Robert D. Richtmyer,Introduction to Hyperbolic Geometry (Springer, New York, 1995), p. 251.

    MATH  Google Scholar 

  4. Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler,Gravitation, Box 2.4. pp. 67–68 (W. H. Freeman, San Francisco, 1973). See also Jean-Marc Levy-Leblond, “Additivity, rapidity, relativity”,Am. J. Phys. 47, 1045–1049 (1979); Isaac Moiseevich Yaglom,A Simple Non-Euclidean Geometry and Its Physical Basis: an Elementary Account of Galilean Geometry and the Galilean Principle of relativity, translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon (Springer, New York, 1979, and Arlan Ramsay and Robert D. Richtmyer,Introduction to Hyperbolic Geometry (Springer, New York, 1995).

    Google Scholar 

  5. Cornelius Lanczos,Space through the Ages. The Evolution of Geometrical Ideas from Pythagoras to Hilbert and Einstein (Academic Press, New York, 1970), p. 66.

    MATH  Google Scholar 

  6. Abraham A. Ungar, “Axiomatic approach to the nonassociative group of relativistic velocities.”Found. Phys. Lett. 2, 199–203 (1989).

    Article  MathSciNet  Google Scholar 

  7. Abraham A. Ungar, “The relativistic noncommutative nonassociative group of velocities and the Thomas rotation.”Res. Math. 16, 168–179 (1989).

    MathSciNet  MATH  Google Scholar 

  8. Abraham A. Ungar, “The relativistic velocity composition paradox and the Thomas rotation,”Found. Phys. 19, 1385–1396 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. Abraham A. Ungar, “Weakly associative groups.”Res. Math. 17, 149–168 (1990).

    MathSciNet  MATH  Google Scholar 

  10. Abraham A. Ungar, “The expanding Minkowski space.”Res. Math. 17, 342–354 (1990).

    MathSciNet  MATH  Google Scholar 

  11. Abraham A. Ungar, “Group-like structure underlying the unit ball in real inner product spaces.”Res. Math. 18, 355–364 (1990).

    MathSciNet  MATH  Google Scholar 

  12. Abraham A. Ungar, “Quasidirect product groups and the Lorentz transformation group,” in T. M. Rassias (ed.),Constantin Caratheodory: An International Tribute, Vol. II, (World Scientific Publ., New Jersey, 1991), pp. 1378–1392.

    Google Scholar 

  13. Abraham A. Ungar, “Successive Lorentz transformations of the electromagnetic field,”Found. Phys. 21, 569–589 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  14. Abraham A. Ungar, “Thomas precession and its associated grouplike structure.”Amer. J. Phys. 59, 824–834 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  15. Abrhama A. Ungar, “A note on the Lorentz transformations linking initial and final 4-vectors.”J. Math. Phys. 33, 84–85 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. Abraham A. Ungar, “The abstract Lorentz transformation group.”Amer. J. Phys. 60, 815–828 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  17. Abraham A. Ungar, “The holomorphic automorphism group of the complex disk.”Aequat. Math. 47, 240–254 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Abraham A. Ungar, “The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the Unit ball in any complex Hilbert space.”J. Math. Phys. 35, 1408–1425 (1994); and Erratum: “The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space”,J. Math. Phys. 35, 3770 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Abraham A. Ungar, “The abstract complex Lorentz transformation group with real metric II: The invariance group of the form |t|2-∥x2,”J. Math. Phys. 35, 1881–1913 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Yaakov Friedman and Abraham A. Ungar, “Gyrosemidirect product structure of bounded symmetric domains.”Res. Math. 26, 28–38 (1994).

    MathSciNet  MATH  Google Scholar 

  21. Yuching You and Abraham A. Ungar, “Equivalence of two gyrogroup structures on unit balls.”Res. Math. 28, 359–371 (1995).

    MathSciNet  MATH  Google Scholar 

  22. Abrham A. Ungar, “Extension of the unit disk gyrogroup into the unit ball of any real inner product space,”J. Math. Anal. Appl. 202, 1040–1057 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Benz,Geometrische Transformationen Unter Besonderer Berücksichtigung der Lorentztranformationen (Wissenschaftsverlag, Wien, 1992), Chap. 6.

    Google Scholar 

  24. R. Sexl and H. K. Urbantke,Relativität, Gruppen Teilchen Springer, New York, 1992), pp. 40, 138.

    MATH  Google Scholar 

  25. Abraham A. Ungar and Michael K. Kinyon,Gyrogroups: The Symmetries of Thomas Precession (Kluwer Academic Publishers, Doydrecht, in preparation); and A. B. Romanowska and J. D. H. SmithPost-modern Algebra, Vol. 2 (Wiley, New York, in preparation).

  26. J. Dwayne Hamilton, “Relativistic precession.”Am. J. Phys. 64, 1197–1201 (1996).

    Article  ADS  Google Scholar 

  27. E. G. Peter Rowe, “Rest frames for a point particle in special relativity,”Am. J. Phys. 64, 1184–1196 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. J. Philpott, “Thomas precession and the Lienard-Wiechert field.”Am. J. Phys. 64, 552–556 (1996).

    Article  ADS  Google Scholar 

  29. Heinrich Wefelscheid, “On K-loops,”J. Geom. 44, 22–23 (1992); and H. Wefelscheid, “On K-loops,”J. Geom. 53, 26 (1995).

    Google Scholar 

  30. Helmut Karzel, “Zusammenhange zwischen Fastbereichen scharf 2-fach transitiven Permutationsgruppen und 2-Strukturen mit Rechteksaxiom.”Abh. Math. Sem. Univ. Hamburg 32, 191–206 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  31. Alexander Kreuzer, “Inner mappings of Bruck loops,” preprint.

  32. Hala O. Pflugfelder,Quasigroups and Loops: Introduction (Heldermann Verlag, Berlin, 1990).

    Google Scholar 

  33. O. Chein, Hala O. Pflugfelder, and Jonathan D. H. Smith (eds.)Quasigroups and Loops Theory and Applications, Sigma Series in Pure Mathematics, Vol. 8 (Heldermann Verlag, Berlin, 1990).

    Google Scholar 

  34. In group theory aloop is a groupoid (S,+) with an identity element in which each of the two equationsa+x=b andy+a=b for the unknownsx andy possesses a unique solution. Several of our identities can be found in the literature on loop theory; see, e.g., Alexander Kreuzer and Heinrich Wefelscheid, “On K-loops of finite order, To the memory of Hans Zassenhaus,”Res. Math. 25, 79–102 (1994).

    MathSciNet  MATH  Google Scholar 

  35. Abraham A. Ungar, “Midpoints in gyrogroups.”Found Phys. 26, 1277–1328 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  36. See, for instance, A. Aurilia, “Invariant relative velocity,”Am. J. Phys. 43, 261–264 (1975). It is difficult to find in the literature Einstein's relativistic velocity addition law for not necessarily parallel velocities in a vector form. It can, however, readity be derived from the vector Lorenz transformation (8.14) which, in turm, can be found in the literature; see, e.g., Ref. 64.

    Article  ADS  Google Scholar 

  37. During a seminar on spacetime geometry that the author delivered at The University of Sydney, School of Mathematics and Statistics, April 18, 1996, Dr. Hugh Luckock stated that the splitting of spacetime into time and space, offered in gyrogroup theory by means of Thomas precession, may provide an answer to the desire to split the general relativistic notion of spacetime into space and time, expressed in: Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler,Gravitation (W. H. Freeman, San Francisco, 1973), Section 24.1, p. 505.

    Google Scholar 

  38. Michael K. Kinyon and Abraham A. Ungar, “The complex unit disk,” Preprint.

  39. See, for instance, L. Silberstein,The Theory of Relativity (Macmillan, London, 1914), p. 169.

    MATH  Google Scholar 

  40. I. C. Mocanu, “On the relativistic velocity composition paradox and the Thomas rotation,”Found. Phys. Lett. 5, 443–456 (1992).

    Article  MathSciNet  Google Scholar 

  41. Jonathan D. H. Smith and Abraham A. Ungar, “Abstract space-times and their Lorentz groups,”J. Math. Phys. 37, 3073–3098 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. John D. JacksonClassical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 524.

    MATH  Google Scholar 

  43. See Eq. (3.3) in Lars V. Ahlfors “Old and new in Möbius groups,”Ann. Acad. Sci. Fenn. Ser. A. I Math. 9, 93–105 (1984); and p. 25 in Lars V. Ahlfors,Möbius Transformations in Several Dimensions, Lecture Notes (University of Minnesota, Minneapolis, 1981).

    MathSciNet  MATH  Google Scholar 

  44. Marvin J. Greenberg,Euclidean and Non-Euclidean Geometries (W. H. Freeman, San Francisco, 1980), pp. 208–209.

    MATH  Google Scholar 

  45. P. Fraundorf, “Proper velocity and frame-invariant acceleration in special relativity,” preprint, available from physics/9611011 (xxx.lanl.gov archive, Los Alamos, NM, 1996).

  46. Abraham A. Ungar, “Formalism to deal with Reichenbach's special theory of relativity,”Found. Phys. 21, 691–726 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  47. Carl G. Adler, “Does mass really depend on velocity, dad?.”Am. J. Phys. 55, 739–743 (1987); but see T. R. Sandin, “In defense of relativistic mass,”Am. J. Phys. 59, 1032–1036 (1991).

    Article  ADS  Google Scholar 

  48. Robert W. Brehme, “The advantage of teaching relativity with four-vectors.”Am. J. Phys. 36, 896–901 (1968).

    Article  ADS  Google Scholar 

  49. J. A. Winne, “Special Relativity without One-Way Velocity Assumptions: Parts I and II,”Philos. Sci.,37, 81–99, 223–238 (1970).

    Article  Google Scholar 

  50. See Wolfgang Pauli,Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74 A. Sommerfeld, “Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie,”Phys. Z. 10, 826–829 (1909); Vladimir Varićak, “Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie,”Phys. Z. 11, 93–96 and 287–293 (1910); and Vladimir Varićak, “Ueber die nichteuklidische Interpretation der Relativitatstheorie,”Jahresber. Dtsch. Math. Ver. 21, 103–127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, “3-dimensional hyperbolic geometry and relativity,” in A. Coley, C. Dyer, and T. Tupper (eds),Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264–266 (World Scientific, 1988); and Lars-Erik Lundberg, “Quantum theory, hyperbolic geometry and relativity,”Rev. Math. Phys. 6, 39–49 (1994).

    MATH  Google Scholar 

  51. Thomas A. Moore,A Traveler's Guide to Spacetime (McGraw Hill, New York, 1995), fn. 1, p. 54.

    Google Scholar 

  52. Walter Rudin,Function Theory in the Unit Ball of ℂ n Springer-Verlag, New York, 1980).

    Google Scholar 

  53. A. Einstein, Zur Elektrodynamik Bewegter Körper (On the Electrodynamics of Moving Bodies),Ann. Phys. (Leipzig) 17 891–921, (1905). For English translation see H. M. Schwartz, “Einstein's first paper on relativity,” (covers the first of the two parts of Einstein's paper),Am. J. Phys. 45, 18–25, (1977); and H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl,The Principle of Relativity (Dover, New York, translated by W. Perrett and G. B. Jeffrey, 1952, first published in 1923), pp. 37–65.

    ADS  Google Scholar 

  54. Helgason Sigurdur,Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, 1978).

    MATH  Google Scholar 

  55. Oliver Jones, “On the equivalence of the categories of Riemannian globally symmetric spaces of non-compact type and gyrovector spaces,” in preparation.

  56. P. O. Miheev and L. V. Sabinin,Quasigroups and Differential Geometry, Chap. XII in O. Chein, Hala, O. Pflugfelder, and J. D. H. Smith (eds.),Quasigroups and Loops: Theory and Applications (Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990) pp. 357–430; and H. Karzel and M. J. Thomsen, “Near-rings, generalizations, near-rings with regular elements and applications, a report,”Contributions to General Algebra 8,Proc. Conf. on Near-Rings and Near-Fields, Linz, Austria, July 14–20, 1991.

    Google Scholar 

  57. Helmuth K. Urbantke, “Physical holonomy, Thomas precession, and Clifford algebra,” Sect. III,Amer. J. Phys. 58, 747–750 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  58. W. Rindler and L. Mishra, “The nonreciprocity of relative acceleration in relativity.”Phys. Lett A 173, 105–108 (1993). See also Gonzalez-Dîaz, “Relativistic negative acceleration components,”Am. J. Phys. 46, 932–934 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  59. Richard S. Millman and George D. Parker,Geometry A Metric Approach with Models, 2nd ed. (Springer-Verlag, (New York, 1991).

    MATH  Google Scholar 

  60. Edward C. Wallace and Stephen F. West,Roads To Geometry (Prentice Hall, Englewood Cliffs, NJ, 1992).

    MATH  Google Scholar 

  61. See Ref. 59. p. 304.

    MATH  Google Scholar 

  62. An observation made by Michael K. Kinyon.

  63. An observation made by Oliver Jones.

  64. John D. Jackson,Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 517.

    MATH  Google Scholar 

  65. C. B. van Wyk, “Lorentz transformations in terms of initial and final vectors.”J. Math. Phys. 27, 1311–1314 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  66. “The possible existence of extra dimensions to spacetime can be tested astrophysically” perhaps by Gravity Probe B(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, “The Classical tests in Kaluza-Klein gravity,” preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, “Maxwell's equations in six-dimensional space-time,”Indian J. Pure Appl. Phys. 24, 58–64 (1986); E. A. B. Cole, “Centre-of-mass frame in six-dimensional special relativity,”Lett. Nuovo Cimento,28, 171–174 (1980); E. A. B. Cole, “New electromagnetic fields in six-dimensional special relativity,”Nuovo Cimento,60A, 1–11 (1980); E. A. B. Cole and S. A. Buchanan, “Spacetime transformations in six-dimensional special relativity,”J. Phys. A. Math. Gen. 15, L255–L257 (1982); I. Merches, and C. Dariescu, “The use of six-vectors in the theory of special relativity,”Acta Phys. Hung. 70, 63–70 (1991); P. T. Papas, “The three-dimensional time equation,”Lett. Nuovo Cimento 25, 429–434 J. Strnad, “Six-dimensional spacetime and the Thomas precession,”Lett Nuovo Cimento 26, 535–536 (1970); and M. T. Teli, “General Lorentz transformations in six-dimensional space-time,”Phys. Lett. A 128, 447–450 (1987).

  67. Helmuth Urbantke, “Comment on “The expanding Minkowski space’ by A. A. Ungar,”Res. Math.,19, 189–191 (1991).

    MathSciNet  MATH  Google Scholar 

  68. “Thumbs partly up for Gravity Probe B.”Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, “Theoretical background and present status of the Stanford relativity-gyroscope experiment,” inThe Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, “Orbit selection for the Stanford relativity gyroscope experiment,”J. Spacecraft Rockets 19, 66–71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt “Gravity Probe B: I. The scientific implications,” The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson,Near Zero: New Frontiers of Physics (Freeman, New York, 1988); “William Martin Fairbank (1917–1989)”,Nature 342, 125 (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found Phys 27, 881–951 (1997). https://doi.org/10.1007/BF02550347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550347

Keywords

Navigation