Skip to main content
Log in

Phase space generalization of the de Broglie-Bohm model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A generalization of the familiar de Broglie-Bohm interpretation of quantum mechanics is formulated, based on relinquishing the momentum relationship p=∇S and allowing a spread of momentum values at each position. The development of this framework also provides a new perspective on the well-known question of joint distributions for quantum mechanics. It is shown that, for an extension of the original model to be physically acceptable and consistent with experiment, it is necessary to impose certain restrictions on the associated joint distribution for particle positions and momenta. These requirements thereby define a new class of possible models. In pursuing this line of reasoning, the main contributions of this paper are (i) to identify the restrictions that must be imposed, (ii) to demonstrate that joint distribution expressions satisfying them do exist, and (iii) to construct a sample model based on one such joint distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bohm,Phys. Rev.,85, 166, 180 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. de Broglie,Non-Linear Wave Mechanics, (Elsevier, Amsterdam, 1960).

    MATH  Google Scholar 

  3. F. J. Belinfante,A Survey of Hidden-Variables Theories (Pergamon, Oxford, 1973).

    Google Scholar 

  4. D. Bohm and B. J. HileyThe Undivided Universe (Routledge, London, 1993).

    Google Scholar 

  5. P. R. Holland,The Quantum Theory of Motion (Cambridge University Press, (Cambridge, 1995).

    MATH  Google Scholar 

  6. E. Madelung,Z. Phys.,40, 332 (1926).

    Google Scholar 

  7. T. Takabayasi,Prog. Theor. Phys. 8, 143 (1952);9, 187 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Schönberg,Nuovo Cimento 12, 103 (1954).

    MathSciNet  Google Scholar 

  9. D. Bohm and J.-P. Vigier,Phys. Rev. 96, 208 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Bohm, R. Schiller, and J. TiomnoSuppl. Nuovo Cimento 1, 48 (1955).

    MathSciNet  Google Scholar 

  11. T. Takabayasi,Prog. Theor. Phys.,11, 341 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Wigner,Phys. Rev.,40, 749 (1932).

    Article  ADS  Google Scholar 

  13. L. Cohen,J. Math. Phys.,7, 781 (1966).

    Article  Google Scholar 

  14. L. Cohen, inFrontiers of Nonequilibrium Statistical Physics. G. T. Moore and M. O. Scully, eds., (Plenum, New York, 1986).

    Google Scholar 

  15. L. Cohen and Y. I. Zaparovanny,J. Math. Phys. 21, 794 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. D. Finch and R. Groblicki,Found. Phys.,14, 549 (1984).

    Article  MathSciNet  Google Scholar 

  17. E. P. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds., (Dover, New York, 1979).

    Google Scholar 

  18. R. I. Sutherland.J. Math. Phys. 23, 2389 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner,Phys. Rep. 106, 121 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutherland, R.I. Phase space generalization of the de Broglie-Bohm model. Found Phys 27, 845–863 (1997). https://doi.org/10.1007/BF02550344

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550344

Keywords

Navigation