Skip to main content
Log in

Particles and events in classical off-shell electrodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Despite the many successes of the relativistic quantum theory developed by Horwitz et al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical. Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution paratmeter τ, off-shell electrodynamics constitutes a dynamical theory of ppacetime events, interacting through five τ-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, for a test event traversing the field induced by a “fixed” event (an event moving uniformly along the time axis at a fixed point in space). This solution is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical levels. We then offer a new model of the particle current—as a certain distribution of the event currents on the worldline—which eliminates these difficulties and permits comparison of classisical off-shell electrodynamics with the standard Maxwell theory. In this model, the “fixed” event induces a Yukawa-type potential, permitting a semiclassical identification of the pre-Maxwell time scale λ with the inverse mass of the intervening photon. Numerical solutions to the equations of motion are compared with the standard Maxwell solutions, and are seen to coincide when λ≳10−6 seconds, providing an initial estimate of this parameter. It is also demonstrated that the proposed model provides a natural interpretation for the photon mass cut-off required for the renormalizability of the off-shell quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. P. Horwitz and C. Piron,Helv. Phys. Acta 48, 316 (1973).

    Google Scholar 

  2. V. A. Fock,Phys. Z. Sowjetunion 12, 404 (1937).

    Google Scholar 

  3. E. C. G. Stueckelberg,Helv. Phys. Acta 14, 322 (1941); E. C. G. Stueckelberg,Helv. Phys. Acta 14, 588 (1941).

    MathSciNet  Google Scholar 

  4. J. Schwinger,Phys. Rev. 82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. P. Feyman,Phys. Rev. 80, 440 (1950);Rev. Mod. Phys. 20, 367 (1948).

    Article  ADS  Google Scholar 

  6. B. S. DeWitt,Dynamical Theory of Groups and Fields, (Gordon & Breach, New York, 1965).

    MATH  Google Scholar 

  7. Y. Nambu,Prog. Theor. Phys. 5, 82 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. D. Ball,Phys. Rep. 182, 1 (1994).

    Article  ADS  Google Scholar 

  9. M. Lüscher,Ann. Phys. (USA) 142, 359 (1982).

    Article  ADS  Google Scholar 

  10. C. Itzykson J.-B. Zuber,Quantum Field Theory, (McGraw-Hill, New York, 1985), pp. 91–93.

    Google Scholar 

  11. M. C. Land, N. Shnerb, and L. P. Horwitz,J. Math. Phys. 36, 3263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  12. L. P. Horwitz and Y. Lavie,Phys. Rev. D.,26,819 (1982); R. I. Arshansky and L. P. Horwitz,J. Math. Phys. 30, 213 (1989);Phys. Lett. A. 131, 222 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Arshansky and I. P. Horwitz,J. Math Phys. 30, 66 (1989),30, 380 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. C. Land, R. Arshansky, and L. P. Horwitz,Found. Phys. 24, 563 (1994).

    Article  Google Scholar 

  15. M. C. Land and L. P. Horwitz,J. Phys. A: Math. Gen. 28, 3289 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  16. L. P. Horwitz, “The unstable system in relativistic quantum mechanics” TAUP 2134-94; Stephen L. Adler and L. P. Horwitz, “Microanonical ensemble and algebra of conserved generators for generalized quantum dynamics,” IASSNS-HEP-96/36; L. Burakovsky and L. P. Horwitz, “Generalized Boltzmann equation in a manifestly covariant relativistic statistical mechanics,” TAUP-2554-95, L. Burakovsky and L. P. Horwitz, “A new relativistic high temperature Bose-Einstein condensation,” TAUP-2149-94, LA-UR-96-XX, IAS-SNS-96/32.

  17. D. Saad, L. P. Horwitz, and R. I. Arshansky,Found. Phys. 19, 1126 (1989).

    Article  MathSciNet  Google Scholar 

  18. R. Arshansky, L. P. Horwitz and Y. Lavie,Found. Phys. 13, 1167 (1983).

    Article  Google Scholar 

  19. M. C. Land and L. P. Horwitz,Found. Phys. Lett. 4, 61 (1991).

    Article  Google Scholar 

  20. M. C. Land and L. P. Horwitz,Found. Phys. 21, 299 (1991).

    Article  MathSciNet  Google Scholar 

  21. M. C. Land and L. P. Horwitz, “Off-shell quantum electrodynamics,” TAUP-2227-95.

  22. N. Shnerb and L. P. Horwitz,Phys. Res. A. 48, 4068 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Frastai and L. P. Horwitz, “Off-shell fields and Pauli-Villars regularization,” TAUPA-2138-94.

  24. H. Goldstein,Classical Mechanics (Addison-Wesley Reading, 1965), p. 83.

    Google Scholar 

  25. L. Burakovsky and L. P. Horwitz, “Mass-proper time uncertainty relation in a manifestly covariant relativistic statical mechanics,” LA-UR-96-1337, IASSNS-96/34.

  26. R. M. Barnettet al. (Particle Data Group),Phys. Rew. D., 1 (1996).

  27. N. Shnerb and L. P. Horwitz,J. Math. Phys. 35(4), April, 1994, p. 1658.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Land, M.C. Particles and events in classical off-shell electrodynamics. Found Phys 27, 19–41 (1997). https://doi.org/10.1007/BF02550153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550153

Keywords

Navigation