Skip to main content
Log in

On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we unify and extend many of the known results on the dimension of deterministic and random Cantor-like sets in ℝn, and apply these results to study some problems in dynamical systems. In particular, we verify the Eckmann-Ruelle Conjecture for equilibrium measures for Hölder continuous conformal expanding maps and conformal Axiom A# (topologically hyperbolic) homeomorphims. We also construct a Hölder continuous Axiom A# homeomorphism of positive topological entropy for which the unique measure of maximal entropy is ergodic and has different upper and lower pointwise dimensions almost everywhere. this example shows that the non-conformal Hölder continuous version of the Eckmann-Ruelle Conjecture is false.

The Cantor-like sets we consider are defined by geometric constructions of different types. The vast majority of geometric constructions studied in the literature are generated by a finite collection ofp maps which are either contractions or similarities and are modeled by the full shift onp symbols (or at most a subshift of finite type). In this paper we consider much more general classes of geometric constructions: the placement of the basic sets at each step of the construction can be arbitrary, and they need not be disjoint. Moreover, our constructions are modeled by arbitrary symbolic dynamical systems. The importance of this is to reveal the close and nontrivial relations between the statistical mechanics (and especially the absence of phase transitions) of the symbolic dynamical system underlying the geometric construction and the dimension of its limit set. This has not been previously observed since no phase transitions can occur for subshifts of finite type.

We also consider nonstationary constructions, random constructions (determined by an arbitrary ergodic stationary distribution), and combinations of the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [AJ] Alekseyev, V., Jakobson, M.: Symbolic dynamics and Hyperbolic Dynamical Systems. Phys. Rep.75, 287–325 (1981)

    MathSciNet  ADS  Google Scholar 

  • [AS] Afraimovich, V., Shereshevsky, M.: The Hausdorff Dimension of Attractors Appearing by Saddle-Node Bifurcations. Int. J. Bifurcation and Chaos1:2, 309–325 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • [Ba] Barreira, L.: Cantor Sets with Complicated Geometry and Modeled by General Symbolic Dynamics. To appear, Random and Computational Dynamics (1995)

  • [BFKO] Bourgain, J.: Pointwise Ergodic Theorems for Arithmetic Sets, with an Appendix by J. Bourgain, H. Furstenberg, Y. Katznelson, and D. Ornstein. Publ. Math. IHES69, 5–45 (1989)

    MATH  MathSciNet  Google Scholar 

  • [BK] Brin, M., Katok, A.: On Local Entropy. Lecture Notes in Mathematics1007, Geometric Dynamics (1981), Berlin-Heidelberg-New York, Springer Verlag, pp. 30–38

    Google Scholar 

  • [Bo1] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer Lecture Notes #470, Berlin-Heidelberg-New York, Springer Verlag, 1975

    MATH  Google Scholar 

  • [Bo2] BowBo, R.: Hausdorff Dimension of Quasi-circles. Publ. Math. IHES50, 11–25 (1979)

    Google Scholar 

  • [BM] Bertrand-Mathis, A.: Questions Diverses Relatives aux Systèms codés: Applications au δ-shift. Preprint

  • [BU] Bedford, T., Urbański, M.: The box and Hausdorff Dimension of Self-Affine Sets. Ergod. Th. and Dynam. Systems10, 627–644 (1990)

    MATH  Google Scholar 

  • [C] Cutler, C.D.: Connecting Ergodicity and Dimension in Dynamical Systems. Ergod. Th. and Dynam. Systems10, 451–462 (1990)

    MATH  MathSciNet  Google Scholar 

  • [CLP] Collet, P., Lebowitz, J.L., Porzio, A.: The Dimension Spectrum of Some Dynamical Systems. J. Stat. Physics47, 609–644 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • [CM] Cawley, R., Mauldin, R.: Adv. Math.92, 196–236 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • [EM] Mauldin, R., Edgar, G.: Multifractal Decomposition of Digraph Recursive fractals. Proc. London Math. Soc.65, 604–628 (1992)

    MATH  MathSciNet  Google Scholar 

  • [ER] Eckmann, J.P., Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. 3. Rev. Mod. Phys.57, 617–656 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • [F1] Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications Cambridge: Cambridge Univ. Press, 1990

    MATH  Google Scholar 

  • [F2] Falconer, K.: Random Fractals. Math. Proc. Camb. Phil. Soc.100, 559–582 (1986)

    MATH  MathSciNet  Google Scholar 

  • [Fe] Federer, H.: Geometric Measure Theory. Berlin-Heidelberg-New York: Springer Verlag, 1969

    MATH  Google Scholar 

  • [Fr] Frostman, O.: Potential d'équilibre et Capacité des Ensembles Avec Quelques Applications à la Théorie des Fonctions. Meddel. Lunds Univ. Math. Sem.3, 1–118 (1935)

    Google Scholar 

  • [Fu] Furstenberg, H.: Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation. Mathematical Systems Theory1, 1–49 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  • [G] Graf, S.: Statistically Self-similar Fractals. Prob. Theory and Related Fields74, 357–397 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • [GMW] Graf, S., Mauldin, D., Williams, S.: The Exact Hausdorff Dimension in Random Recursive Constructions. 381, Mem. Am. Math. Soc.71 (1988)

  • [KH] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press, 1995

    MATH  Google Scholar 

  • [HP] Hentschel, H.G.E., Procaccia, I.: The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Physica8D, 435–444 (1983)

    MathSciNet  ADS  Google Scholar 

  • [K] Kahane, J.P.: Sur le Modéle de Turbulence de Benoit Mandelbrot. C. R. Acad. Sci. Paris278A, 621–623 (1974)

    MathSciNet  Google Scholar 

  • [L] Ledrappier F.: Dimension of Invariant Measures. Preprint (1992)

  • [Lo] Lopes, A.: The Dimension Spectrum of the Maximal Measure. SIAM J. Math. Analysis20, 1243–1254 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • [LM] Ledrappier, F., Misiurewicz, M.: Dimension of Invariant Measures for Maps with Exponent Zero. Ergod. Th. and Dynam. Systems5, 595–610 (1985)

    MATH  MathSciNet  Google Scholar 

  • [LY] Ledrappier, F., Young, L.S.: The Metric Entropy of Diffeomorphisms. Part II. Ann. of Math.122, 540–574 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • [Mc] McMullen, C.: The Hausdorff Dimension of General Sierpiński Carpets. Nagoya Math. J.96, 1–9 (1984)

    MATH  MathSciNet  Google Scholar 

  • [MW1] Mauldin, R., Williams, S.: Hausdorff Dimension in Graph Directed Constructions. Trans. AMS309:2, 811–829 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • [MW2] Mauldin, R., Williams, S.: Random Geometric Constructions: Asymptotic, Geometric and Asymptotic Properties. Trans. Am. Math. Soc.295, 325–346 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • [Mo] Moran, P.: Additive Functions of Intervals and Hausdorff Dimension. Proc. Camb. Phil. Society42, 15–23 (1946)

    Article  MATH  Google Scholar 

  • [OSY] Ott, E., Sauer, T., Yorke, J.: Lyapunov Partition Functions for the Dimensions of Chaotic Sets. no 9, Phys. Rev.A39, 4212–4222 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • [PP] Parry, W., Pollicott, W.: Zeta Functions and the Periodic, Orbit Structures of Hyperbolic Dynamics. Astérisque187–188, (1990)

  • [PW1] Pesin, Y., Weiss, H.: On the Dimension of Deterministic and Random Cantor-like Sets. Math. Res. Lett.1, 519–529 (1994)

    MATH  MathSciNet  Google Scholar 

  • [PW2] Pesin, Y., Weiss, H.: A Multifractal Analysis of Equilibrium Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions Preprint (1995)

  • [PoW] Pollicott, M., Weiss, H.: The Dimensions of Some Self-affine Limit Sets in the Plane and Hyperbolic Sets. Preprint (1993)

  • [PU] Przytycki, F., Urbański, M.: On Hausdorff Dimension of Some Fractal Sets. Studia Mathematica93, 155–186 (1989)

    MATH  MathSciNet  Google Scholar 

  • [PY] Pesin, Y., Yue, C.B.: Hausdorff Dimension of Measures with Non-zero Lyapunov Exponents and Local Product Structure. PSU Preprint (1993)

  • [R] Ruelle, D.: Thermodynamic Formalism. Reading, Addison-Wesley, 1978

    MATH  Google Scholar 

  • [S] Shereshevsky, M.: On the Hausdorff Dimension of a Class of Non-Self-Similar Fractals. Math. Notes50, no. 5, 1184–1187 1991

    MathSciNet  Google Scholar 

  • [Sh] Shub, M.: Global Stability of Dynamical Systems. Berline-Heidelberg-New York: Springer Verlag, 1987

    MATH  Google Scholar 

  • [St] Stella, S.: On Hausdorff Dimension of Recurrent Net Fractals. Proc. Am. Math. Soc.116, 389–400 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • [Y] Young, L.S.: Dimension, Entropy, and Lyapunov Exponents. Ergod. Th. and Dynam. Systems2, 109–124 (1982)

    Article  MATH  Google Scholar 

  • [W] Walters, P.: Introduction to Ergodic Theory. Berlin-Heidelberg-New York: Springer Verlag, 1982

    MATH  Google Scholar 

  • [We] Weiss, B.: Subshifts of Finite Type and Sophic Systems. Monatschefte für Mathematik77, 462–474 (1973)

    Article  MATH  Google Scholar 

  • [W1] Weiss, H.: The Multifractal Analysis of Topologically Hyperbolic Homeomorphisms. In preparation

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya.G. Sinai

The work of the first author was partially supported by a National Science Foundation grant #DMS91-02887. The work of the second author was partially supported by a National Science Foundation Postdoctoral Research Fellowship and National Science Foundation grant #DMS-9403724.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesin, Y., Weiss, H. On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture. Commun.Math. Phys. 182, 105–153 (1996). https://doi.org/10.1007/BF02506387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506387

Keywords

Navigation