Advertisement

Acta Mechanica Sinica

, Volume 5, Issue 4, pp 361–368 | Cite as

Equation of state calculations for hot, dense matter at arbitrary densities and temperatures

  • Li Zhaoning
  • Pan Shoufu
Article
  • 2 Downloads

Abstract

Within the approximations of spherical lattice cell, central-field, and relativistic Fermi statistics, an algorithm with average atom model is presented to calculate the electronic energy levels and equation of state for hot and dense matter at arbitrary densities and temperatures. Choosing Zink's analytical potential as initial potential, we have solved the Dirac-Slater equation which satisfies the Weigner-Seitz boundary condition. The electronic energy bands are not taken into account. Taking energy level degeneracy as a continuous function of density, we have considered the pressure ionization effects for highly dense matter. Results for13Al atom are shown.

Key Words

average atom model equation of state Dirac-Slater equation pressure ionization effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Holian, K. S., Los Alamos National Laboratory Report, LA-10160-MS(1984), 3712(1–8).Google Scholar
  2. [2]
    Bushman, A. V. and Fortov, V. E.,Sov Phys. Usp.,26, 6 (1983), 465–496.CrossRefGoogle Scholar
  3. [3]
    Feynman, R. P., Metroplis, N., and Teller, E.,Phys. Rev.,75, 6 (1949), 1561–73.zbMATHCrossRefGoogle Scholar
  4. [4]
    Cowan, R. D. and Askin, J.,Phys. Rev.,105, 1 (1957), 144–157.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Zink, J. W.,Phys. Rev.,176, 1 (1968), 279–284.CrossRefGoogle Scholar
  6. [6]
    Avrorin, E. N. et al.,JETP Lett.,31, 12 (1980), 685–687.Google Scholar
  7. [7]
    Rozsnyai, B. F.,Phys. Rev.,A5, 3 (1972), 1137–1149.CrossRefGoogle Scholar
  8. [8]
    Mancini, R. C. and Fontan, C. F.,J. Quant Spectros. Radiat. Transform,34, 2 (1985), 115–122.CrossRefGoogle Scholar
  9. [9]
    Ellis, D. E.,J. Phys.,B10, 1 (1977) 1–5.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Zhao Yijun,Journal of University of Science & Technology for National Defence,4 (1980), 19–41.Google Scholar
  11. [11]
    Perrot, F.,Phys. Rev.,A20, 2 (1979), 586–594.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Latter, R.,Phys. Rev.,99, 2 (1955), 510–519.CrossRefGoogle Scholar
  13. [13]
    Latter, R.,Phys. Rev.,99, 6 (1955), 1854–1870.zbMATHCrossRefGoogle Scholar
  14. [14]
    Desclaux, J. P.,Atom. Data and Nucl. Data Table.,12, 4 (1973), 311–406.CrossRefGoogle Scholar
  15. [15]
    Vladimirov, A. S. et al.,JETP Lett.,39, 2 (1984) 82–85.Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1989

Authors and Affiliations

  • Li Zhaoning
    • 1
  • Pan Shoufu
    • 1
  1. 1.Institute of Atomic and Molecular PhysicsJilin UniversityJilinChina

Personalised recommendations