Skip to main content
Log in

Modern turbulence and new challenges

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The paper briefly reviews the progress in turbulence research in the 20th century and a number of issues are addressed based on achievements. The modern theroy of Navier-Stokes equation provides the theoretical basis for the development of turbulence research. The significance and bottle neck of DNS and the physical experiment in exploring turbulent flows are analyzed. The active manipulation of turbulence is directly guided by the knowledge of large-scale coherent structures. The existing problems in the large-eddy simulation are also pointed out. Scalar turbulence, which behaves quite different from fluid turbulence in many aspects, has drawn much attention in recent years. Besides the analysis of the difficulties in turbulence research, a number of examples are also presented to show how to use modern theory, computer and high technology to explore the nature of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantwell BJ. Organized motion in turbulent flows.Annual Review of Fluid Mechanics, 1981, 13: 457–515

    Article  Google Scholar 

  2. Lorenz EN. Deterministic nonperiodic flow.J Atmospheric Sciences, 1963, 20: 130–141

    Article  Google Scholar 

  3. Moin P, Mahesh K. Direct numerical simulation: A tool in turbulence research.Annual Review of Fluid Mechanics, 1999, 30: 539–578

    Article  MathSciNet  Google Scholar 

  4. Speziale CG. Analytical methods for the development of Reynolds-stress closures in turbulence.Annual Review of Fluid Mechanics, 1991, 23: 107–157

    Article  MATH  MathSciNet  Google Scholar 

  5. Shraiman BI, Siggia ED. Scalar turbulence.Nature, 2000, 304: 639–645

    Article  Google Scholar 

  6. Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach, 1963

    MATH  Google Scholar 

  7. Foias C, Manley O Rosa R, et al. Navier-Stokes Equation and Turbulence. Cambridge: Cambridge University Press, 2001

    Google Scholar 

  8. Benzi R, Ciliberto S, Baudet C, et al. On the scaling of 3-dimensional homogeneous and isotropic turbulence.Phsica D, 1995, 80(4): 385–398

    Article  MATH  MathSciNet  Google Scholar 

  9. Xu C, Zhang Z, denToonder JMJ, et al. Origin, of high kurtosis in viscous sublayer.Physics of Fluids, 1996, 8(7): 1938–1942

    Article  Google Scholar 

  10. Zhang ZS, Ma B, Cui GX, et al. Flow patterns and dissipation of turbulent kinetic energy in near wall turbulence.Chinese Science, 1998, Bulletin 43(2): 117–120

    Google Scholar 

  11. Ma B, van Doorne CWH, Zhang Z, et al. On the spatial evolution of a wall imposed periodic disturbance in pipe Poiseuille flow atRe=3 000, Part 1: Subcritical, disturbance.Journal of Fluid Mechanics, 1999, 398: 181–224

    Article  MATH  Google Scholar 

  12. Shan H, Ma B, Zhang Z, et al. Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow.Journal of Fluid Mechanics, 1999, 387: 39–60

    Article  MATH  Google Scholar 

  13. Shan H, Zhang Z, Nieuwstadt FTM. Direct numerical simulation of transition in pipe flow under the influence of wall disturbances.International Journal of Heart and Fluid Flows, 1998, 19(4): 320–325

    Article  Google Scholar 

  14. Marusic I, Kunkel GJ, Porte-Agel F. Experimental study of wall boundary conditions for large eddy simulation.Journal of Fluid Mechanics, 2001, 446: 309–320

    MATH  Google Scholar 

  15. Jiang N, Shu W, Wang ZD. Burst event detection in wall turbulence by wvita method.Acta Mechanica Sinica, 2000, 16(1): 29–35

    Article  Google Scholar 

  16. Adrian RJ, Meinhart CD. Vortex organization in the outer region of the turbulent boundary layer.Journal Fluid Mechanics, 2000, 422: 1–54

    Article  MATH  MathSciNet  Google Scholar 

  17. Lian QX. A kind of fast changing coherent structure in a turbulent boundary layer.Acta Mechanica Sinica, 1999, 15(3): 193–200

    Article  Google Scholar 

  18. Feng BC, Cui GX, Zhang ZS. Experimental study of fully developed turbulent pipe flow.Acta Mechanica Sinica, 2002, 34(2): 156–167 (in Chinese)

    Google Scholar 

  19. Tokumaru PT, Dimotakis PE. Image correlation velocimetry.Experiments in Fluids, 1995, 19(1): 1–15

    Article  Google Scholar 

  20. Hwang KS, Cui GX, Zhang ZS. Quantitative visualization of the near-wall structures in a turbulent pipe flow by ICV technique.Experiments in Fluids, 2002, 32(4): 447–452

    Article  Google Scholar 

  21. Aubry NH, Lumley P, Holmes PJ, et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer.Journal of Fluid Mechanics, 1988, 192: 115–173

    Article  MATH  MathSciNet  Google Scholar 

  22. Perry AE, Marusic I. A wall-wake model for the turbulence structure of boundary layer. Part I: Extension of the attached eddy hypothesis.Journal of Fluid Mechanics, 1995, 298: 361–388

    Article  MATH  Google Scholar 

  23. Bradshaw P. Turbulence modeling with application to turbomachinery.Prog Aerospace Sci, 1996, 32(6): 575–624

    Article  Google Scholar 

  24. Liepmann H. The rise and fall of ideas, in turbulence.American Scientists, 1979, 67(2): 221–228

    MathSciNet  Google Scholar 

  25. Choi JI, Xu CX, Sung HJ. Drag reduction by spanwise wall oscillation in wall bounded turbulent flows.AIAA Journal, 2002, 40(5): 842–850

    Article  Google Scholar 

  26. Lumley J, Blossey P. Control of turbulence.Annual Review of Fluid Mechanics, 1998, 30: 311–327

    Article  MathSciNet  Google Scholar 

  27. Deardorff JW. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection.J Atmos Sci, 1970, 27: 1211–1213

    Article  Google Scholar 

  28. Li JC, Xie ZT. Large eddy simulation for canopy turbulent flows.Acta Mechanica Sinica, 1999, 31(4): 406–414 (in Chinese)

    Google Scholar 

  29. Schumann U. Subgrid scale model for finite difference, simulations of turbulent flows in plane channel and annuli.Journal of Computational Physics, 1975, 18(4): 376–404

    Article  MATH  MathSciNet  Google Scholar 

  30. Grotzbach G. Direct numerical and large eddy simulation of turbulent channel flows.Encyclopedia of Fluid Mechanics: Gulf, 1987, 6: 1337–1391

    Google Scholar 

  31. Piomelli U, Ferziger J, Moin P. New approximate boundary conditions for large eddy simulation.Physics of Fluids, A, 1989, 1 (6): 1061–1068

    Article  Google Scholar 

  32. Cabot W, Moin P. Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow.Flow, Turbulence and Combustion, 2000, 63 (1–4): 269–291

    Article  MATH  Google Scholar 

  33. Spalart PR, Jou WH, Strelets M, et al. Comments on the feasibility of LES for wings on a hybrid RANS/LES approach. In: Liu CQ, Liu ZN eds. Proc of Advances in DNS/LES, Ruston, 1997-8-4-8. Columbus: Greyden Press, 1997. 137–147

    Google Scholar 

  34. Farge M, Schneider K. Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelet.Flow, Turbulence and Combustion, 2001, 66(4): 393–426

    Article  MATH  MathSciNet  Google Scholar 

  35. Warhaft Z. Passive Scalars in Turbulent Flows.Annual Review of Fluid Mechanics, 2000, 32: 203–240

    Article  MATH  MathSciNet  Google Scholar 

  36. Cui GX, Chen YG, Zhang ZS, et al. Transportation of passive scalar in inhomogeneous turbulence.Acta Mechanica Sinica, 2000, 16(1): 21–28

    Article  Google Scholar 

  37. Zhou HB, Cui GX, Zhang ZS. Dependence of turbulent, scalar flux on molecular Prandtl number.Physics of Fluid, 2002, 14(4): 2388–2394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (NSFC) (19572041 and 19732005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhaoshun, Z., Guixiang, C. & Chunxiao, X. Modern turbulence and new challenges. Acta Mech Sinica 18, 309–327 (2002). https://doi.org/10.1007/BF02487784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487784

Key Words

Navigation