Skip to main content
Log in

Numerical simulation on compressible turbulence by spectral method

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The numerical and physical issues of simulations on compressible turbulence are reviewed in the present paper. An outline of the global spectral methods and the progress of recent local spectral methods are illustrated. Several typical subjects in this field are studied, including homogeneous isotropic turbulence, autoignition in premixed turbulence, interaction between flames and turbulence, and shock wave in turbulence. The results of the numerical simulations are discussed, enabling us to discover and to understand the physical phenomena which have not been solved by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fox DG, Orszag SA. Pseudospectral approximation to two-dimensional turbulence.J Comput Phys, 1973, 11: 612–619

    Article  MATH  Google Scholar 

  2. Herring JR, Orszag SA, Kraichnan RH, Fox DG. Decay of two-dimensional homogeneous turbulence.J Fluid Mech, 1974, 66: 417–444

    Article  MATH  Google Scholar 

  3. Fornberg B. A numerical study of 2-D turbulence.J Comput Phys, 1977, 25: 1–31

    Article  MATH  Google Scholar 

  4. Hosokawa I, Yamamoto K. Intermittency exponents and generalized dimensions of a directly simulated fully developed turbulence.Phys Fluids A, 1990, 2(6): 889–892

    Article  Google Scholar 

  5. Erlebacher G, Hussaini MY, Speziale CG, Zang TA. Toward the large-eddy simulation of compressible turbulent flows. NASA CR-178273. ICASE report No. 87-20, 1987

  6. Clarke, JF. Small amplitude gasdynamic disturbances in an exploding atmosphere.J Fluid Mech, 1978, 89: 343

    Article  MATH  Google Scholar 

  7. Klein R, Peters N. Cumulative effects of weak pressure waves during the induction period of a thermal explosion in a closed cylinder.J Fluid Mech, 1988, 187: 197

    Article  MATH  Google Scholar 

  8. Oran ES, Boris JP. Weak ans strong ignition. II. Sensitivity of the hudrogen-oxygen system.Combustion and Flame, 1982, 48: 149

    Article  Google Scholar 

  9. Lutz AE, Kee RJ, Miller JA. The influence of pressure disturbances on spontaneous ignition. Combustion Institute Western States Meeting, 1987

  10. Lutz AE, Kee RJ, Miller JA, Dwyer HA, Oppenheim AK. Dynamic effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels. In: Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA. 1987, 1683

  11. Tsuge S, Sagara K. Arrhenius' law in turbulent media and an equivalent tunnel effect.Combust Sci Technol, 1978, 18: 179

    Google Scholar 

  12. Sagara K. Exact turbulence correction to Arrhenius' law in the asymptotic limit of high activation energy.Combust Sci Technol, 1980, 21: 191

    Google Scholar 

  13. Maas U, Warnatz J. Modeling of H2−O2 ignition by hot spots. In: Kuhl AL et al, Ed, Dynamics of Deflagrations and Reactive Systems: Flames, Progress in Astronautics and Aeronautics, AIAA, Washington DC, 1991, 131: 3

    Google Scholar 

  14. Ashurst WT, Barr PK. Stochastic calculation of laminar wrinkled flame propagation via vortex dynamics.Combust Sci Technol, 1983, 34: 227–256

    Google Scholar 

  15. Rutland CJ, Ferzieger JH, El Tahry SH. Full numerical simulations and modeling of turbulent premixed flames. In: Twenty-third Symposium (International) on Combustion, The Combustion Institute, 1990. 621–627

  16. Poinsot T, Veynante D, Candel S. Diagrams of premixed turbulent combustion based on direct simulation. In: Twenty-third Symposium (International) on Combustion, The Combustion Institute, 1990. 613–619

  17. Poinsot T, Veynante D, Candel S. Quenching precess and premixed turbulent combustion diagrams.J Fluid Mech, 1991, 228: 561–606

    Google Scholar 

  18. Shepherd IG, Ashurst WT. Flame front geometry in premixed turbulent flames. In: Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, 1992. 485–491

  19. Ashurst WT. Constant-density Markstein flamelet in Navier-Stokes turbulence.Combust Sci Technol, 1993

  20. Haworth DC, Poinsot TJ. Numerical simulations of Lewis number effects in turbulent premixed flames.J Fluid Mech, 1992, 244: 405–436

    Article  Google Scholar 

  21. Meadows KR, Kumar A, Hussaini MY. Computational study on the interaction between a vortex and a shock wave.AIAA J, 1991, 29: 174–179

    Article  Google Scholar 

  22. Guichard L, Vervisch L, Domingo P. Numerical study of the interaction between a mixing zone and a pressure discontinuity. AIAA paper 95-0877, Proceedings of AIAA 33rd Aerospace Science Meeting, 1995

  23. Rotman D. Shock wave effects on a turbulent flow.Physics of Fluids A, 1991, 3: 1792–1806

    Article  MATH  Google Scholar 

  24. Lee S, Lele SK, Moin P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave.J Fluid Mech, 1993, 251: 533–562

    Article  Google Scholar 

  25. Hannappel R, Freidrich R. DNS of aM=2 shock interacting with isotropic turbulence. In: Proceedings of First ERCOFTAC Workshop on DNS and LES, 1994

  26. Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral Methods in Fluid Dynamics. Springer-Verlag, 1987

  27. Hussaini MY, Kopriva DA, Salas MD, Zang TA. Spectral methods for the Euler equations: Part I—Fourier methods and shock capturing.AIAA J, 1985, 23: 64–70

    MATH  Google Scholar 

  28. Wang JP, Nakamura Y, Yasuhara M. A Chebyshev collocation method for the compressible Navier-Stokes equations in generalized coordinates.Transactions of the Japan Society for Aeronautical and Space Sciences, 1990, 33 (101): 120–134

    Google Scholar 

  29. Wang JP, Nakamura Y, Yasuhara M. Several improvements of spectral method in compressible flow calculation. In: Proc Int Sympo on Computational Fluid Dynamics, Nagoya, 1989. 1210–1215

  30. Wang JP. Non-periodic Fourier transform and finite spectral method. In: Proc 6th Int Sympo on Computational Fluid Dynamics, Lake Tahoe, 1995. 1339–1344

  31. Hasegawa T, Yoshinari H, Wang JP, Jounouchi T, Yamaguchi S. Direct numerical simulations of compressible homogeneous turbulence. In: Proc 4th Sympo on Computational Fluid Dynamics, 1990. 375–378

  32. Hasegawa T, Noguchi S, Nakamura T, Kuchida M, Yamaguchi S. Direct numerical simulation of compressible turbulence and its application. In: Proc 6th Sympo on Computational Fluid Dynamics, 1992. 321–324

  33. Hasegawa T, Arai A, Kadowaki S, Wang JP, Jounouchi T, Yamaguchi S. Direct numerical analysis of autoignition of a turbulent premixed gas. In: Proc 28th Sympo on Combustion, 1990. 284–286

  34. Hasegawa T, Arai A, Kadowaki S, Yamaguchi S. Autoignition of a turbulent premixed gas.Combust Sci and Tech, 1992, 84: 1–13

    Google Scholar 

  35. Arai A, Hasegawa T, Kadowaki S, Wang JP, Jounouchi T, Yamaguchi S. Direct numerical simulation of autoignition process in a turbulent premixed gas. In: Proc 4th Sympo on Computational Fluid Dynamics, 1990. 657–660

  36. Borghi R. On the structure and morphology of turbulent premixed flames. In: Casci C ed. Recent Advances in the Aerospace Sciences. Plenum Publishing Co., 1985. 117–138

  37. Peters N. Length and time scales in turbulent combustion. In: Borghi R and Murthy SBN, eds. Turbulent Reactive Flows. Springer-Verlag, 1989. 242–256

  38. Hasegawa T, Yamaguchi S, Wang JP, Jounouchi T. Propagation of premixed flames in vortical flows. In: Proc 27th Sympo on Combustion, 1989. 49–51

  39. Hasegawa T, Kuchita M, Yamaguchi S. Interaction of premixed flames with high-intensity two-dimensional turbulence.Combust Sci and Tech (Japanese language companion publication), 1994, 2: 77–87

    Google Scholar 

  40. Hasegawa T, Noguchi S. Numerical study on a turbulent flow compressed by a weak shock wave.Int J Comput Fluid Dynamics, 1997, 8: 63–75

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jianping, W., Hasegawa, T. Numerical simulation on compressible turbulence by spectral method. Acta Mech Sinica 14, 193–207 (1998). https://doi.org/10.1007/BF02487754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487754

Key Words

Navigation