Skip to main content
Log in

Lattice-Boltzmann model for compressible perfect gases

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We present an adaptive lattice Boltzmann model to simulate supersonic flows. The particle velocities are determined by the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have high Mach number. A particle potential energy is introduced so that the model is suitable for the perfect gas with arbitrary specific heat ratio. The Navier-Stokes equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. As preliminary tests, two kinds of simulations have been performed on hexagonal lattices. One is the one-dimensional simulation for sinusoidal velocity distributions. The velocity distributions are compared with the analytical solution and the measured viscosity is compared with the theoretical values. The agreements are basically good. However, the discretion error may cause some non-isotropic effects. The other simulation is the 29 degree shock reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H, Chen S, Matthaeus W. Recovery of the Navier-Stokes equation using a lattice-gas Boltzmann method.Phys Rev A, 1992, 45(8): R5339–5342

    Article  Google Scholar 

  2. Qian Y H, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation.Europhys Lett, 1992 17(6): 479–484

    MATH  Google Scholar 

  3. Chen Y, Ohashi H, Akiyama M. Heat transfer in lattice BGK modeled fluid.J Stat Phys, 1995, 81(1/2): 71–85

    Article  MATH  Google Scholar 

  4. Sun C H. Multispecies Lattice-Boltzmann models for mass diffusion.Acta Mechanica Sinica, 1998, 30(1): 20–26 (in Chinese)

    Google Scholar 

  5. Martinez D, Chen S, Matthaeus W. Lattice Boltzman magneto-hydrodynamics.Phys Plasma, 1994, 1(6): 1850–1867

    Article  Google Scholar 

  6. Chen S, Doolen G D. Lattice Boltzmann method for fluid flows.Annu Rev Fluid Mech, 1998, 30: 329–364

    Article  MathSciNet  Google Scholar 

  7. Alexander F J, Chen H, Doolen G D. Lattice Boltzmann model for compressible fluids.Phys Rev A 1992, 46(4): 1967–1970

    Article  Google Scholar 

  8. Xu K. A new class of gas-kinetic relaxation schemes for the compressible Euler equations.J Stat Phys, 1995, 81(1/2): 147–164

    Article  MATH  Google Scholar 

  9. Xu K, Martinelli L, Jameson A. Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion.J Comput Phys, 1995, 120: 48–65

    Article  MATH  MathSciNet  Google Scholar 

  10. Nadiga B T. An Euler solver based on locally adaptive discrete velocities.J Stat Phys, 1995, 81 (1/2): 129–146.

    Article  MATH  Google Scholar 

  11. Hu S X, Yan G W, Shi W P. Lattice Boltzmann model for compressible perfect gas.Acta Mechanica Sinica, 1997, 13(3): 314–322

    Google Scholar 

  12. Sun C H. Lattice-Boltzmann models for high speed flows.Phys Rev E 1998, 58(6): 7283–7287

    Article  Google Scholar 

  13. Sun C H. Simulations of compressible flows with strong shocks by adaptive lattice Boltzmann model.J Comput Phys, 2000, 161(1): 70–84

    Article  MATH  Google Scholar 

  14. Sun C H. Lattice Boltzmann model for compressible fluid on square lattice.Chin Phys Lett, in press

  15. Sun C H. Adaptive lattice Boltzmann model for compressible flows: viscous and conductive properties.Phys Rev E, 2000, 61(3), 2645–2653

    Article  Google Scholar 

  16. Sun C H. Thermal lattice Boltzmann model for compressible fluid.Chin Phys Lett, 2000, 17(3): 209–211

    Article  Google Scholar 

  17. Bernardin D, Sero-Guillaume O, Sun C H. Multi-species 2D lattice gas with energy levels: diffusive properties.Physica D, 1991, 47: 169–188

    Article  MATH  Google Scholar 

  18. Colella P. Multidimensional upwind methods for hyperbolic conservation laws.J Comput Phys, 1990, 87: 171–200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (Grant Nos. 19672030 and 19972037) and by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenghai, S. Lattice-Boltzmann model for compressible perfect gases. Acta Mech Sinica 16, 289–300 (2000). https://doi.org/10.1007/BF02487682

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487682

Key words

Navigation