Acta Mechanica Sinica

, Volume 10, Issue 3, pp 273–281 | Cite as

General coupled solution of anisotropic piezoelectric materials with an elliptic inclusion

  • Du Shanyi
  • Liang Jun
  • Han Jiecai
  • Wang Biao


In this investigation, the Stroh formalism is used to develop a general solution for an infinite, anisotropic piezoelectric medium with an elliptic inclusion. The coupled elastic and electric fields both inside the inclusion and on the interface of the inclusion and matrix are given.

Key Words

piezoelectric solids inclusion electroelastic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sosa HA and Pak YE. Three-dimensional eigenfunction analysis of a crack in a piezoelectric material.Int J Solids Structures, 1990, 26: 1–15zbMATHCrossRefGoogle Scholar
  2. [2]
    Wang B. Three-dimensional analysis of an ellipsodial inclusion in a piezoelectric material.Int J Solids Structures, 1992, 29: 293–308zbMATHCrossRefGoogle Scholar
  3. [3]
    Wang B, Du Shanyi. Three-dimensional analysis of defects in a piezoelectric material.Acta Mechanica Sinica, 1992, 8(2): 181–185zbMATHCrossRefGoogle Scholar
  4. [4]
    Chen T. The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium.Int J Solids Structures, 1993, 30: 1983–1995zbMATHCrossRefGoogle Scholar
  5. [5]
    Deeg WF. The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph D Thesis, Stanford University, CA, 1980Google Scholar
  6. [6]
    Dunn M and Taya M. Micromechanics predications of the effective electroelastic moduli of piezoelectric composites.Int J Solids Structures, 1993 30: 161–175zbMATHCrossRefGoogle Scholar
  7. [7]
    Stroh AN. Steady state problems in anisotropic elasticity.J Math Phys, 1962, 41: 77zbMATHMathSciNetGoogle Scholar
  8. [8]
    Ting TCT. Explicit solution and invariance of the singularities at an interface crack in anisotropic components.Int J Solids Structures, 1986, 22: 965–983zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Ting TCT. Some identities and the structure of Ni in the Stroh formalism of anisotropic elasticity.Q Appl Math, 1988, 46: 109–120zbMATHMathSciNetGoogle Scholar
  10. [10]
    Pak YE. Linear electro-elastic fracture mechanics of piezoelectric materials.Int J of Fracture, 1992, 54: 79–100Google Scholar
  11. [11]
    Suo Z, Kuo CM, Barnett DM and Willis JR. Fracture mechanics for piezoelectric ceramics.J Mech Phys Solids, 1992, 40: 739–765zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Maugin GA. Continum Mechanics of Electromagnetic Solids North-Holland, Amsterdam, 1988Google Scholar
  13. [13]
    Barnett DM and Lothe J. Synthesis of the sextic and the integral fomalism for dislocation, Green's function and surface waves in anisotropic elastic solids.Phys Norv, 1973, 7: 13–19Google Scholar
  14. [14]
    Lekhnitskii GA. Anisotropic Plates. Gordon & Breach, NY, 1968Google Scholar
  15. [15]
    Hwu Chyanbin and Ting TCT. Two-dimensional problems of the anisotropic elastic solid with an elliptic inclusion.Q J Mech Appl Math, 1989, 42: 553–572Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1994

Authors and Affiliations

  • Du Shanyi
    • 1
  • Liang Jun
    • 1
  • Han Jiecai
    • 1
  • Wang Biao
    • 1
  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations