Skip to main content
Log in

Electromechanical deformation and fracture of piezoelectric/ferroelectric materials

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This review presents the progress and current status of the investigation on electromechamical deformation and fracture of piezoelectric/ferroelectric materials. An attempt is made to summarize a few fundamental aspects, which include electromechanical constitutive relations, piezoelectric micromechanics and electric fracture and fatigue, instead of describing all technological backgrounds, basic physics, experimental findings, and theoretical developments. A number of open questions and future prospective are presented. It is hoped that this review will encourage people to joint the exploration of this important and interesting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Oxford University Press, 1977

    Google Scholar 

  2. Ikeda T. Fundamentals of Piezoelectricity. Oxford: Oxford University Press, 1996

    Google Scholar 

  3. Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001

    Google Scholar 

  4. Suo Z. Mechanics concepts for failure in ferroelectric ceramics. In: Srinivasan AV, ed. Smart Structures and Materials. ASME Aerospace Division, 1991, AD 24. 1-6

  5. Suo Z. Stress and strain in ferroelectrics.Current Opinion in Solid State & Materials Science, 1998, 3: 486–489

    Google Scholar 

  6. Gao HJ, Zhang TY, Tong P. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic.J Mech Phys Solids, 1997, 45: 491–510

    Google Scholar 

  7. McMeeking RM. Electrostrictive forces near crack-like flaws.J Appl Math Phys, 1989, 40: 615–627

    MATH  Google Scholar 

  8. Wang TC. Analysis of strip electric saturation model of crack problem in piezoelectric materials.Acta Mechanica Sinica (in Chinese), 1999, 31(1): 311–319

    Google Scholar 

  9. Yao LQ, Yu HR. Active control of piezoelectric intelligent annular plates.Acta Mechanica Sinica (in Chinese), 1999, 31 (3): 366–371

    Google Scholar 

  10. Chen YH, Tian WY. On the bueckner work conjugate integral and its relations to the J-integral and M-integral in piezoelectric materials.Acta Mechanica Sinica (in Chinese), 1999, 31(5): 625–632

    Google Scholar 

  11. Wang ZK, Liu H, Liu YC, et al. A peculiar acoustoelectric wave, in piezoelectric layered structure.Acta Mechanica Sinica(in Chinese), 2000, 32(1): 25–33

    Google Scholar 

  12. Li CQ, Fang DN. Experimental study of the constitutive behavior of a ferroelectric ceramic.Acta Mechanica Sinica (in Chinese), 2000, 32(1): 34–41

    Google Scholar 

  13. Zhang Y. On the spontaneous configuration of ferroelectric-ferroelastic materials.Acta Mechanica Sinica (in Chinese), 2000, 32(2): 213–222

    Google Scholar 

  14. Zhang JG, Liu ZX, Lin QR. An analytic solution for static electromechanical coupled behavior of a laminated piezoelectric plate.Acta Mechanica Sinica (in Chinese), 2000, 32(3): 326–333

    Google Scholar 

  15. Liu H, Wang TJ, Wang ZK. Effect of initial stress on the propagation behavior of generalized rayleigh waves in layered piezoelectric structures.Acta Mechanica Sinica(in Chinese), 2000, 32(4): 491–496

    Google Scholar 

  16. Zhou YH, Jiang Q. Existence and characteristic relation of wave speed to surface acoustic waves on a rotating piezoelectric half-body.Acta Mechanica Sinica(in Chinese), 2000, 32(6): 707–716

    Google Scholar 

  17. Ding JQ, Chen ZY. Molecular dynamics calculation of thermodynamic properties of nanocrystaline α-ion.Acta Mechanica Sinica(in Chinese), 2000, 32(6): 739–743

    Google Scholar 

  18. Chen WQ, Ding HJ. A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems.Acta Mechanica Sinica(English Series), 1999, 15(1): 52–58

    MathSciNet  Google Scholar 

  19. Zhou JP, Li DK, Li AL. Analysis of laminated piezoelectric cylindrical shells.Acta Mechanica Sinica(English Series), 1999, 15(2): 145–154

    Google Scholar 

  20. Liang W, Shen YP. Gradient surface ply model, of SH wave propagation in SAW sensors.Acta Mechanica Sinica (English Series), 1999, 15(2): 155–163

    Google Scholar 

  21. Gao CF, Wang MZ. Generalized 2D problem of piezoelectric media containing collinear cracks.Acta Mechanica Sinica(English Series), 1999, 15(3): 235–244

    Google Scholar 

  22. Chen ZT, Yu SW. Transient response of a piezoelectric ceramic with two coplanar cracks under electrochemical impact.Acta Mechanica Sinica(English Series), 1999, 15(4): 325–333

    Google Scholar 

  23. Cai JB, Chen WQ, Ye GR et al. Natural frequencies of submerged piezoceramic hollow spheres.Acta Mechanica Sinica(English Series), 2000, 16(1): 55–62

    Google Scholar 

  24. Ding HJ, Xu RQ, Chen WQ. Exact solutions for free vibration of transversely isotropic piezoelectric circular plates.Acta Mechanica Sinica(English Series), 2000, 16(2): 141–147

    Google Scholar 

  25. Liu JX, Zhang XS, Liu XL, et al. Anisotropic thermopiezoelectric solids with an elliptic inclusion or a hole under uniform heat flow.Acta Mechanica Sinica (English Series), 2000, 16(2): 148–163

    Google Scholar 

  26. Deeg WF. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [Ph.D. Dissertation], Stanford University, USA, 1980

    Google Scholar 

  27. Wang B. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material.Int J Solids & Structs, 1992, 29: 293–308

    MATH  Google Scholar 

  28. Chen TY. Green's functions and the nonuniform transformation problem in piezoelectric medium.Mech Res Comm, 1993, 20: 271–278

    MATH  MathSciNet  Google Scholar 

  29. Dunn ML. Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inomogeneity problems.Int J Engng Sci, 1994, 32: 119–131

    MATH  MathSciNet  Google Scholar 

  30. Dunn ML, Wienecke HA. Green's function for transversely isotropic piezoelectric solids.Int J Solids & Structs, 1996, 33: 4571–4581

    MATH  Google Scholar 

  31. Jiang B, Fang DN, Hwang KC. The effective properties of piezocomposites, Part I: Single inclusion problem.Acta Mechanica Sinica(English Series), 1997, 13(4): 339–346

    Google Scholar 

  32. Jiang B, Fang DN, Hwang KC. A unified model for the multiphase piezocomposites with ellipsoidal inclusion.Int J Solids & Structs, 1999, 36: 2707–2733

    MATH  Google Scholar 

  33. Ding HJ, Chen B, Liang J. On the Green's functions for two-phase transversely isotropic piezoelectric materials.Int J Solids & Structs, 1997,34: 3041–3057

    MATH  Google Scholar 

  34. Newnham RE, Skinner DP, Cross LE. Connectivity and piezoelectric-pyroelectric composites.Mater Res Bull, 1978, 13: 525–536

    Google Scholar 

  35. Banno H. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles.Ferroelectrics, 1983, 50: 3–12

    Google Scholar 

  36. Smith WA, Auld B. A modeling 1–3 composite piezoelectrics: thickness-mode, oscillations.IEEE Trans Ultrasonics Ferroelectrics Frequency Control, 1991, 38: 40–47

    Google Scholar 

  37. Grekov AA, Kramarov SO, Kuprienko AA. Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions.Ferroelectrics, 1989, 99: 115–126

    Google Scholar 

  38. Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields I. binary media: local fields effective behavior.ASME J Applied Mechanics, 1993, 60: 265–269

    Article  MATH  MathSciNet  Google Scholar 

  39. Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields II. multiphase media: effective behavior.ASME J Applied Mechanics, 1993, 60: 270–275

    Article  MathSciNet  Google Scholar 

  40. Benveniste Y. Exact results concerning the local fields and effective properties in piezoelectric composites.ASME J Eng Mater and Tech, 1994, 116: 260–267

    Article  Google Scholar 

  41. Dunn ML, Taya M. Micromechanics predictions of the effective electroelastic moduli of the piezoelectric composites.Int J Solids & Structs, 1993, 30: 161–175

    MATH  Google Scholar 

  42. Jiang B, Fang DN. The effective properties of piezoelectric composite materials with transversely isotropic spherical inclusions.Applied Mathematics and Mechanics, 1999, 20(4): 371–380

    MathSciNet  Google Scholar 

  43. Qin QH, Yu SW. Effective moduli of thermopiezoelectric materials with micro-cavities.Int J Solids & Structs, 1998, 35(36): 5085–5095

    MATH  Google Scholar 

  44. Qin QH, Mai YW, Yu SW. Effective moduli for thermopiezoelectric materials with microcracks.Int J of fracture, 1998, 91: 359–371

    Google Scholar 

  45. Benveniste Y. The determination of the elastic and electric fields in a piezoelectric inhomogeneity.J Appl Phys, 1992, 72: 1086–1095

    Google Scholar 

  46. Budiansky Y. On the elastic moduli of some heterogeneous materials.J Mech Phys Solids, 1965, 13: 223–227

    Google Scholar 

  47. Lu W, Fang DN, Hwang KC. Nonlinear electric-mechanical behavior and micromechanics modeling of ferroelectric domain evolution.Acta Mater, 1999, 47(10): 2913–2926

    Google Scholar 

  48. Cao HC, Evans AG. Nonlinear deformation of ferroelectric ceramics.J Am Ceram Soc, 1993, 76: 890–896

    Google Scholar 

  49. Schaufele AB, Hardtl KH. Ferroelastic properties of lead zirconate titanate ceramics.J Am Ceram Soc, 1996, 79: 2637–2640

    Article  Google Scholar 

  50. Fang DN, Li CQ. Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic.Journal of Materials Science, 1999, 34: 4001–4010

    Google Scholar 

  51. Hwang SC, Lynch CS, McMeeking RM. Ferroelectric/ferroelastic interactions and a polarization switching model.Acta Metall Mater, 1995, 43: 2073–2084

    Google Scholar 

  52. Lynch CS. The effect of unaxial stress on the electro-mechanical response of 8/6/35 PLZT.Acta Mater, 1996, 44: 4137–4148

    Google Scholar 

  53. Jiang B, Fang DN, Hwang KC. The constitutive models of ferroelectric composites with a viscoelastic and dielectric relaxation matrix, Part II: experiment, calculation and analysis.Science in China, Series A, 2000, 43(6): 647–654

    Google Scholar 

  54. Fang DN, Soh AK, Li CQ et al. Nonlinear electric-mechanical behavior of PZT-5 fiber reinforced composite with epoxy resin matrix.Journal of Materials Science Letter, 2000, 19: 1579–1581

    Google Scholar 

  55. Huber JE, Feleck NA. Multi-axial electric switching of a ferroelectric: theory versus experiment.J Mech Phys Solids, 2001, 49: 785–811

    MATH  Google Scholar 

  56. Chen PJ. Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials.Int J Solids & Structs, 1980, 16: 1059–1067

    MATH  Google Scholar 

  57. Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formualtion for coupled electromechanical hysteresis effects—I. Basic equations.Int J Engng Sci, 1988, 26(12): 1279–1295

    MATH  MathSciNet  Google Scholar 

  58. Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics.Int J Engng Sci, 1988, 26(12): 1297–1306

    MATH  MathSciNet  Google Scholar 

  59. Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formulation for coupled electromechanical hysteresis effects—III. Parameter identification.Int J Engng Sci, 1989, 27(8): 975–987

    MATH  Google Scholar 

  60. Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formulation for coupled electromechanical hysteresis effect—IV. Combined electromechanical loading.Int J Engng Sci, 1989, 27(8): 989–1000

    MATH  Google Scholar 

  61. Yang W, Suo Z. Cracking in ceramic actuators caused by electrostriction.J Mech Phys Solids, 1994, 42: 649–663

    Google Scholar 

  62. Hwang SC, Huber JE, McMeeking RM, et al. The simulation of switching in polycrystalline ferroelectric ceramics.J Appl Phys, 1998, 84(3): 1530–1540

    Google Scholar 

  63. Jiang Q. On modeling of phase transformations in ferroelectric materials.Acta Mech, 1994, 102: 149–165

    MATH  MathSciNet  Google Scholar 

  64. Lynch CS. On the development of multi-axial phenomenological constitutive laws for ferroelectric ceramics.J Intell Mater Systems Struct, 1998, 9: 555–563

    Google Scholar 

  65. Cen W, Lyncy CS. A micro-electro-mechanical model for polarization switching of ferroelectric materials.Acta Materialia, 1998, 46(15): 5303–5311

    Google Scholar 

  66. Chen W, Lynch CS. Multiaxial constitutive behavior, of ferroelectric materials.Journal of Engineering Materials and Technology-Transactions of the ASME, 2001, 123(2): 169–175

    Google Scholar 

  67. Chen X, Fang DN, Hwang KC. A mesoscopic model of the constitutive behavior of monocrystalline ferroelectrics.Smart Mater Struct, 1997, 6: 145–151

    Google Scholar 

  68. Chen X, Fang DN, Hwang KC. Micromechanics simulation of ferroelectric polarization switching.Acta Materiala, 1997, 45: 3181–3189

    Google Scholar 

  69. Chen X, Fang DN, Hwang KC. A nonlinear constitutive theory for ferroelectrics.Key Engineering Materials, 1998, 145–149: 977–982

    Article  Google Scholar 

  70. Lu W, Fang DN, Hwang KC. Numerical analysis of ferroelectric/ferroelastic domain switching in ferroelectric ceramics.Computational Materials Science, 1997, 8: 291–308

    Google Scholar 

  71. Lu W, Fang DN, Hwang KC. A constitutive theory for ferroelectric ceramics.Key Engineering Materials, 1998, 145–149: 983–988

    Google Scholar 

  72. Cocks ACF, McMeeking RM. A phenomenological constitutive law for the behaviour of ferroelectric ceramics.Ferroelectrics, 1999, 228: 219–228

    Google Scholar 

  73. Fan J, Stoll WA, Lynch WA. Nonlinear constitutive behaviour of soft and hard PZT: experiments and modeling.Acta Mater, 1999, 47(17): 4415–4425

    Google Scholar 

  74. Kamlah M, Jiang Q. A constitutive model for ferroelectric PZT ceramics under uniaxial loading.Smart Mater Struct, 1999, 8(4): 441–459

    Google Scholar 

  75. Kamlah M, Tsakmakis C. Phenomenological modeling of the nonlinear electromechanical coupling in ferroelectrics.Int J Solids & Structs, 1999, 36: 669–695

    MATH  Google Scholar 

  76. Kamlah M, Bohle U, Munz D. On a non-linear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics.Computational Materials Science, 2000, 19(1–4): 81–86

    Google Scholar 

  77. Landis CM, McMeeking RM. A phenomenological constitutive law for ferroelastic switching and a resulting asymptotic crack tip solution.Journal of Intelligent Material Systems and Structures, 1999, 10(2): 155–163

    Google Scholar 

  78. Jiang B, Fang DN, Hwang KC. Constitutive model of ferroelectric composites with a viscoelastic and dielectric relaxation matrix I—Theory.Science in China, Series A, 1999, 42(11): 1193–1200

    Article  MATH  Google Scholar 

  79. Jiang B, Karihaloo BL. Constitutive modeling of ferroelectric composites with a PSZ matrix.Proceedings of the Royal Society of London, Series A—Mathematical Physical and Engineering Sciences, 2001, 457: 837–864

    Article  MATH  Google Scholar 

  80. Huber JE, Fleck NA, McMeeking RM. A crystal plasticity model for ferroelectrics.Ferroelectrics, 1999, 228: 39–52

    Google Scholar 

  81. Huber JE, Fleck NA, Landis CM, et al. A constitutive model for ferroelectric polycrystals.J Mech Phys Solids, 1999, 47: 1663–1697

    MATH  MathSciNet  Google Scholar 

  82. Hwang SC, Waser R. Study of electrical and mechanical contribution to switching in ferroelectric/ferroelastic polycrystals.Acta Materialia, 2000, 48(12):3271–3282

    Google Scholar 

  83. Hwang SC, Arlt G. Switching in ferroelectric polycrystals.Journal of Applied Physics, 2000, 87(2): 869–875

    Google Scholar 

  84. Smith RC, Hom CL. Domain wall theory for ferroelectric hysteresis.Journal of Intelligent Material Systems and Structures, 1999, 10(3): 195–213

    Google Scholar 

  85. Smith RC, Ounaies Z. A domain wall model for hysteresis in piezoelectric materials.Journal of Intelligent Material Systems and Structures, 2000, 11(1): 62–79

    Google Scholar 

  86. Kim SJ. A one-dimensional continuum model for thermoelectric phase transformation in ferroelectrics.Int J Solids & Structs, 2000, 37(8): 1145–1164

    MATH  Google Scholar 

  87. Kessler H, Balke H. On the local and average energy release in polarization switching phenomena.J Mech & Phys Solids, 2001, 49(5): 953–978

    MATH  Google Scholar 

  88. Hauke T, Steinhausen R, Seifert W, et al. Modeling of poling behavior of ferroelectric 1–3 composites.Journal of Applied Physics, 2001, 89(9): 5040–5047

    Google Scholar 

  89. Hao TH, Gong X, Suo Z. Fracture mechanics for the design of ceramic multilayer actuators.J Mech Phys Solids, 1996, 44: 23–48

    Google Scholar 

  90. Gong X, Suo Z. Reliability of ceramic multilayer actuators: A nonlinear finite element simulation.J Mech Phys Solids, 1996, 44: 751–769

    Google Scholar 

  91. Hom CL, Shankar N. A finite element method for electrostrictive ceramic devices.Int J Solids & Structs, 1996, 33: 1757–1779

    MATH  Google Scholar 

  92. Hom CL, Shankar N. A dynamic model for nonlinear electrostrictive actuators.IEEE Trans Ultrason Ferroelectrics, 1998, 45: 409–420

    Google Scholar 

  93. Furuta A, Uchino K. Dynamic observation of crack propagation in piezoelectric multilayer actuators.J Am Ceram Soc, 1993, 76: 1615–1617

    Google Scholar 

  94. Pisarenko GG, Chushko VM, Kovalev SP. Anisotropy of fracture toughness of piezoelectric ceramics.J Am Ceram Soc, 1985, 68: 259–265

    Google Scholar 

  95. Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zn∶Ti=0.54∶0.46) ceramics.J Am Ceram Soc, 1990, 73: 567–574

    Google Scholar 

  96. Park ET, Routbort JL, Li Z, et al. Anisotropic microhardness in single-crystal and polycrystalline BaTiO3.J Mater Sci, 1998, 33: 669–673

    Google Scholar 

  97. Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate.Ferroelectric Ceramics Materials Letters, 2000, 46: 131–135

    MathSciNet  Google Scholar 

  98. Singh RN, Wang H. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings: An experimental study. In: Proc of AMD-206/ MD-58, Adaptive Materials Systems, ed. Carman GP, Lynch CS and Sottos NR, ASME, 1995. 85–95

  99. Wang H, Singh RN. Crack propagation in piezoelectric ceramics: effects of applied electric field.J Appl Phys, 1997, 81: 7471–7479

    Google Scholar 

  100. Park SB, Sun CT. Fracture criteria for piezoelectric ceramics.J Am Ceram Soc, 1995, 78: 1475–1480

    Google Scholar 

  101. Fu R, Zhang TY. Effect of an applied electric field on the modulus of rupture of poled lead zirconate titanate ceramics.J of Amer Ceram Society, 1998, 81: 1058–1060

    Article  Google Scholar 

  102. Fu R, Zhang TY. Effect of an applied electric field on the fracture toughness of poled lead zirconate titanate ceramics.J of Amer Ceram Society, 2000, 83: 1215–1218

    Article  Google Scholar 

  103. Fu R, Zhang TY. Influences of temperature and electric field on the bending strength of lead zirconate ceramics.Acta Mater, 2000: 1729–1740

  104. Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate.Ferroelectric Ceramics Materials Letters, 2000, 46: 131–135

    MathSciNet  Google Scholar 

  105. Bing QD, Fang DN. Investigation on fracture behavior of ferroelectric ceramics under combined electromechanical combined loading by using a moiré interferometry technique, ICEM2001, Washington: SPIE, 2001

    Google Scholar 

  106. Meschke F, Raddatz O, Kolleck A, et al. R-curve behavior and crack closure stresses in barium titanate and (Mg, Y)-PSZ ceramics.J Am Ceram Soc, 2000, 83(2): 353–361

    Article  Google Scholar 

  107. Kolleck A, Schneider GA, Meschke FA. R-curve behavior of BaTiO3- and PZT ceramics under the influence of an electric field applied parallel to the crack front.Acta Mater, 2000, 48: 4099–4113

    Google Scholar 

  108. Fett T, Glazounov A, Hoffmann MJ, et al. On the interpretation of different R-curves for soft PZT.Engn Frac Mech, 2001, 68: 1207–1218

    Google Scholar 

  109. Parton VZ. Fracture behaviour of piezoelectric materials.Acta Astronaut, 1976, 3: 671–683

    MATH  Google Scholar 

  110. Deeg WF. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [Ph.D. Dissertation], Stanford University, USA, 1980

    Google Scholar 

  111. McMeeking RM. Electrostrictive forces near crack-like flaws.J Appl Math Phys, 1989, 40: 615–627

    MATH  Google Scholar 

  112. Suo Z, Kuo CM, Barnet DM, et al. Fracture mechanics for piezoelectric ceramics.J Mech Phys Solids, 1992, 40: 739–765

    MATH  MathSciNet  Google Scholar 

  113. Dunn ML. The effect of crack face boundary conditions on the fracture mechanics.Engng Fract Mech, 1994, 48: 25–39

    Google Scholar 

  114. Hao TH, Shen ZY. A new electric boundary condition of electric fracture mechanics and its applications.Engineering Fracture Mechanics, 1994, 47: 793–802

    Google Scholar 

  115. Sosa H, Khutoryansky N. New developments concerning piezoelectric materials with defects.Int J Solids & Structs, 1996, 33: 3399–3414

    MATH  MathSciNet  Google Scholar 

  116. Zhang TY, Tong P. Fracture mechanics for a mode III crack in a piezoelectric material.Int J Solids & Structs, 1996, 33: 343–359

    MATH  Google Scholar 

  117. McMeeking RM. Crack tip energy release rate for a piezoelectric compact tension specimen.Engng Fract Mech, 1999, 64: 217–244

    Google Scholar 

  118. Fang DN, Soh AK. Finite element modeling of electro-mechanical coupled analysis for ferroelectric ceramic materials with defects.Computer Methods in Applied Mechanics and Engineering, 2001, 190/22–23: 2771–2787

    Google Scholar 

  119. Qi H, Fang DN, Yao ZH. Analysis of electric boundary condition effect on crack propagation in piezoelectric ceramics.Acta Mechanica Sinica(English Series), 2001, 17(1): 59–70

    MATH  Google Scholar 

  120. Liu B, Fang DN, Hwang KC. On the effect of remanent polarization on electro-mechanical fields near an elliptic cavity in poled or depolarized piezoelectric ceramics.Int J Fracture, 2000, 103: 189–204

    Google Scholar 

  121. McMeeking RM. A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics.Int J Engng Sci, 1990, 28: 605–613

    MATH  Google Scholar 

  122. Pak YE. Crack extension force in a piezoelectric material.J Appl Mech, 1990, 57: 647–653

    MATH  Google Scholar 

  123. Pak YE. Linear electro-elastic fracture mechanics of piezoelectric materials.Int J Fract, 1992, 54: 79–100

    Google Scholar 

  124. Sosa H. Plane problems in piezoelectric media with defects.Int J Solids & Structs, 1991, 28: 491–505

    MATH  Google Scholar 

  125. Sosa H. On the fracture mechanics of piezoelectric media with defects.Int J Solids & Structs, 1992, 29: 2613–2622

    MATH  Google Scholar 

  126. Zhang TY, Hack JE. Mode III cracks in piezoelectric materials.J of Appl Phys, 1992, 71: 5865–5870

    Google Scholar 

  127. Barnett DM, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators.Phys Status Solidi (b), 1975, 67: 105–111

    Google Scholar 

  128. Fan H, Sze KY, Yang W. Two dimensional contact of a piezoelectric half space.Int J Solids & Structs, 1996, 33: 1305–1315

    MATH  MathSciNet  Google Scholar 

  129. Chen ZT, Yu SW, Karihaloo BL. Anti-plane shear problem for a crack between two dissimilar piezoelectric materials.Int J Fracture, 1997, 86(2): L9-L12

    Google Scholar 

  130. Kim SJ, Jones JD. Effects of piezo-actuator delamination on the performance of active noise and vibration control system.J Intel Mat Syst and Structures, 1996, 7: 668–676

    Google Scholar 

  131. Beom HG, Atluri SN. Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media.Int J Fract, 1996, 75: 163–183

    Google Scholar 

  132. Qin QH, Yu SW. An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials.Int J Solids & Structs, 1997, 34: 581–590

    MATH  Google Scholar 

  133. Shindo Y, Narita F, Tanaka K. Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip.Theoretical and Applied Frac Mechanics, 1996, 25: 65–71

    Google Scholar 

  134. Shen S, Kuang ZB. Interface crack in bi-piezothermoelastic media and the interaction with a point heat source.Int J Solids & Structs, 1998, 35: 3899–3915

    MATH  Google Scholar 

  135. Shen S, Kuang ZB, Hu S. Interface crack problems of a laminated piezoelectric plate.Eur J Mech A/Solids, 1999, 18: 219–238

    MATH  Google Scholar 

  136. Shen S, Kuang ZB, Hu S. On interface crack in laminated anisotropic medium.Int J Solids & Structs, 1999, 36: 4251–4268

    MATH  Google Scholar 

  137. Soh AK, Fang DN, Lee KL. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading.European Journal of Mechanics(A), 2000, 19: 961–977

    MATH  Google Scholar 

  138. Yu SW, Qin QH. Damage analysis of thermopiezoelectric properties: Part I—Crack tip singularities.Theoretical and Applied Fracture Mechanics, 1996, 25: 263–277

    Google Scholar 

  139. Yu SW, Qin QH. Damage analysis of thermopiezoelectric properties: Part II—Effective crack model.Theoretical and Applied Fracture Mechanics, 1996, 25: 279–288

    Google Scholar 

  140. Zhu T, Yang W. Crack kinking in a piezoelectric solid.Int J Solids & Structs, 1999, 36: 5013–5027

    MATH  Google Scholar 

  141. Lo KK. Analysis of branched cracks.J Appl Mech, 1978, 45: 797–802

    MATH  Google Scholar 

  142. Obata M. Nemat-Nasser S, Goto Y. Branched cracks in anisotropic elastic solids.J Appl Mech, 1989, 56: 858–864

    Google Scholar 

  143. Wang TC, Shih CF, Suo Z. Crack extension and kinking in laminates and bicrystals.Int J Solids & Structs, 1992, 29: 327–344

    MATH  Google Scholar 

  144. Shindo Y, Ozawa E, Nowacki JP. Singular stress and electric fields of a cracked piezoelectric strip.Appl Electromagn Mater, 1990, 1: 77–87

    Google Scholar 

  145. Li SF, Mataga PA. Dynamic crack-propagation in piezoelectric materials 1. electrode solution.J Mech Phys Solids, 1996, 44: 1799–1830

    MATH  MathSciNet  Google Scholar 

  146. Li SF, Mataga PA. Dynamic crack-propagation in piezoelectric materials 2. vacuum solution.J Mech Phys Solids, 1996, 44: 1831–1866

    MATH  MathSciNet  Google Scholar 

  147. Chen ZT, Yu SW. Antiplane Yoffe crack problem in piezoelectric materials.Int J Fract, 1997, 84: L41-L45

    Google Scholar 

  148. Chen ZT, Yu SW. Anti-plane dynamic fracture mechanics in piezoelectric materials.Int J Fracture, 1997, 85: L3-L12

    Google Scholar 

  149. Chen ZT, Yu SW. A semi-infinite crack under anti-plane mechanical impact in piezoelectric materials.Int J Fract, 1998, 88: L53-L56

    Google Scholar 

  150. Chen ZT, Yu SW, Karihaloo BL. A Griffith crack moving along the interface of dissimilar piezoelectric materials.Int J Fracture, 1999, 91(2): 197–213

    Google Scholar 

  151. Wang XY, Yu SW. Scattering of SH waves by an Arc-shaped crack between a cylindrical piezoelectric inclusion and matrix II: Far fields.Int J Fracture, 1999, 100: L35-L40

    Google Scholar 

  152. Wang XY, Yu SW. Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impact: mode III problem.Int J Solids & Structs, 2000, 37(40): 5795–5808

    MATH  Google Scholar 

  153. Wang XY, Yu SW. Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impact: Mode I problem.Mechanics of Materials, 2001, 33(1): 11–20

    Google Scholar 

  154. Sosa H, Khutoryansky N. Further analysis of the transient dynamic response of piezoelectric bodies subjected to electric impulses.Int J Solids & Structs, 2001, 38: 2101–2114

    MATH  Google Scholar 

  155. Fang DN, Liu B, Hwang KC. Energy analysis on fracture of ferroelectric ceramics.Inter J Frac, 2000, 100(4): 401–408

    Google Scholar 

  156. Wang TC. Analysis of strip electric saturation model of crack problem in piezoelectric materials.Int J Solids Structs, 2000, 37: 6031–6049

    MATH  Google Scholar 

  157. Fulton CC, Gao H. Effect of local polarization switching on piezoelectric fracture.J Mech Phys Solids, 2001, 49: 927–952

    MATH  Google Scholar 

  158. Fulton CC, Gao H. Microstructural modeling of ferroelectric fracture.Acta Mater, 2001, 49: 2039–2054

    Google Scholar 

  159. Xu XL, Rajapakse RKND. Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics.Acta Mater, 1999, 47: 1735–1747

    Google Scholar 

  160. Zuo JZ, Sih GC. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics.Theor Appl Fract Mech, 2000, 34: 17–33

    Google Scholar 

  161. Wang BL, Noda N. Mixed mode crack initiation in piezoelectric ceramic strip.Theor Appl Fract Mech, 2000, 34: 35–47

    Google Scholar 

  162. Soh AK, Fang DN, Lee GL. Fracture analysis of piezoelectric materials with defects using energy density theory, accepted byInt J Solids & Structs, 2001

  163. Yang W, Zhu T. Switch-toughening of ferroelectrics gauged by electric fields.J Mech Phys Solids, 1998, 46: 291–311

    MATH  Google Scholar 

  164. Yang W, Zhu T. Fracture and fatigue of ferroelectrics under electric and mechanical loading.Fatigue and Fracture of Engineering Materials and Structure, 1998, 21: 1361–1370

    Google Scholar 

  165. Yang W. Fracture, fatigue and domain switch of ferroelectrics under electrical and mechanical loading. In: Applied Mechanics in Americas, D. Pamplona et al. eds, 1999, 7: 651–654

  166. Zhu T, Yang W. Toughness variation of ferroelectrics by polarization switch under non-uniform electric field.Acta Mater, 1997, 45(11): 4695–4702

    Google Scholar 

  167. Zeng X, Rajapakse RKND. Crack amplification and shielding in plane piezoelectric solids.Composites: Part B, 2001, 31: 391–404

    Google Scholar 

  168. Zeng X, Rajapakse RKND. Domain switching induced fracture toughness variation in ferroelectrics.Smart Mater Struct, 2001, 10: 203–211

    Google Scholar 

  169. Rajapakse RKND, Zeng X. Toughening of counducting cracks due to domain switching.Acta Mater, 2001, 49: 877–885

    Google Scholar 

  170. Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics.Materials Letters, 2000, 46: 131–135

    MathSciNet  Google Scholar 

  171. Giannakopoulos AE, Suresh S. Theory of indentation of piezoelectric materials.Acta Mater, 1999, 47(7): 2153–2164

    Google Scholar 

  172. Jiang LZ, Sun CT. Analysis of indentation cracking in piezoceramics.Int J Solids & Structs, 2001, 38: 1903–1918

    MATH  Google Scholar 

  173. Furata A, Uchino K. Dynamic observation of crack propagation in piezoelectric multilayer actuators.J Am Ceram Soc, 1993, 76: 1615–1617

    Google Scholar 

  174. Jiang QY, Cross LE. Effects of porosity on electric fatigue behavior in PLZT and PZT ferroelectric ceramics.J Mater Sci, 1993, 28: 4536–4543

    Google Scholar 

  175. Cao HC, Evans AG. Electric-field-induced fatigue crack growth in piezoelectrics.J Am Ceram Soc, 1994, 77: 1783–1786

    Google Scholar 

  176. Lynch CS, Chen L, Suo Z, et al. Crack growth in ferroelectric ceramics driven by cyclic polarization switching.J of Intelligent Mater Sysm and Struc, 1995, 6: 191–198

    Article  Google Scholar 

  177. Hill MD, White GS, Hwang CS. Cyclic damage in lead zirconate titanate.J Am Cerm Soc, 1996, 79(7): 1915–1920

    Google Scholar 

  178. Tai WP, Kim SH. Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr, Ti)O3 ceramics.Mater Sci and Engng, 1996, B38: 182–185

    Google Scholar 

  179. Zhu T, Fang F, Yang W. Fatigue crack growth in ferroelectrics ceramics below the coercive field.J Mater Sci Letters, 1999, 18: 1025–1027

    Google Scholar 

  180. Winzer H, Schneider GA, Steffens J, et al. Cyclic fatigue due to electric loading in ferroelectric ceramics.J of the European Ceramic Society, 1999, 19: 1333–1337

    Google Scholar 

  181. Jiang QY, Subbarao EC, Cross LE. Grain size dependence of dielectric fatigue behavior of hot pressed PLZT ferroelectric ceramics.Acta Metall Mater, 1994, 42(11): 3687–3694

    Google Scholar 

  182. Jiang QY, Cao WW, Cross LE. Electric fatigue in lead zirconate titanate ceramics.J Am Ceram Soc, 1994, 77(1): 211–215

    Google Scholar 

  183. Zhu T, Yang W. Fatigue crack growth in ferroelectrics driven by cyclic electric loading.J Mech Phys Solids, 1999, 47: 81–97

    MATH  Google Scholar 

  184. Yang W, Zhu T, Fang F. Electric fatigue crack growth in ferroelectrics: theory and experiment. In: Proceedings of the 7th International Fatigue Congress, Beijing: Higher Education Press, 1999, 1857–1864

    Google Scholar 

  185. Fang DN, Liu B, Hwang KC. Fatigue crack growth in ferroelectric ceramics driven by cyclic electric field, ICF10, 2001

  186. Wang X, Shen Y. Some basic theory for thermal magnetic electric elastic media.Chinese Journal of Applied Mechanics, 1995, 12: 28–39 (in Chinese)

    MATH  Google Scholar 

  187. Hom CL, Shankar N. A numerical analysis of relaxor ferroelectric multilayered actuators and 2-2 composite arrays.J Smart Mater Struct, 1995, 4: 266–273

    Google Scholar 

  188. Hom CL, Shankar N. A fully coupled constitutive model for electrostrictive ceramic materials.J Intell Mater Syst Struct, 1994, 5: 795–801

    Google Scholar 

  189. Kumar S, Singh RN. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings.Acta Mater, 1996, 44: 173–200

    Google Scholar 

  190. Kumar S, Singh RN. Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials.Mater Sci Eng, 1997, A231: 1–9

    Google Scholar 

  191. Kumar S, Singh RN. Energy release rate and crack propagation in piezoelectric materials. Part II: Combined mechanical and electrical loads.Acta Mater, 1997, 45: 859–868

    Google Scholar 

  192. Qi H, Fang DN, Yao ZH. FEM analysis of electro-mechanical coupling effect of piezoelectric materials.Computational Materials Science, 1997, 8: 283–290

    Google Scholar 

  193. Fang DN, Qi H, Yao ZH. Numerical analysis of crack propagation in piezoelectric ceramics.Fatigue Frac Eng Mater Struc, 1998, 21: 1371–1380

    Google Scholar 

  194. Fang DN, Soh AK. Finite element modeling of electro-mechanical coupled analysis for ferroelectric ceramic materials with defects.Computer Methods in Applied Mechanics and Engineering, 2001, 190/22–23: 2771–2787

    Google Scholar 

  195. McMeeking RM. Crack tip energy release rate for a piezoelectric compact tension specimen.Engn Frac Mech, 1999, 64: 217–244

    Google Scholar 

  196. Hwang SC, McMeeking RM. A finite element model of ferroelastic polycrystals.Inter J Solids & Structs, 1999, 36: 1541–1556

    MATH  Google Scholar 

  197. Hwang SC, McMeeking RM. A finite element model of ferroelastic polycrystals.Ferroelectrics, 1998, 211: 177–194

    Google Scholar 

  198. Fang DN, Hwang KC. Nonlinear electromechanical deformation and fracture related to domain switching in ferroelectric ceramics. In: IUTAM Symposium on “Mechanics of Martensitic Phase Transformation in Solids”, Hong Kong, June 11–15, 2001

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (100025209)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daining, F., Soh, A.K. & Jinxi, L. Electromechanical deformation and fracture of piezoelectric/ferroelectric materials. Acta Mech Sinica 17, 193–213 (2001). https://doi.org/10.1007/BF02486876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486876

Key Words

Navigation