Skip to main content
Log in

Macro slip theory of plasticity for polycrystalline solids

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A macro slip theory is presented in this paper. Four independent slip systems are proposed for polycrystalline solids. Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron. It is proved that for proportional loading, present results are identical with the classical flow theory of plasticity. For nonproportional loading, the macro slip theory shows good predicting ability. The calculated results are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor, G. I., Proc. R. Soc. London. Series A145 (1934), 362–387.

    MATH  Google Scholar 

  2. Orowan, E., Z. Phys.,89 (1934), 634–659.

    Article  Google Scholar 

  3. Polanyi, Von, M., Z. Phys.,89 (1934), 660–664.

    Article  Google Scholar 

  4. Schmid, E., Proc. Inter. Congr. Appl. Mech. 1924 (Delft) 342.

  5. Hill, R.,J. Mech. Phys. Solids,14 (1966), 95–102.

    Article  Google Scholar 

  6. Rice, J.,J. Mech. Phys. Solids,19 (1971), 443–455.

    Google Scholar 

  7. Asaro, R. J., Micromechanics of crystals and polycrystals. Advances in Applied Mechanics, Vol. 23, 1–115, 1983. Eds. Hutchinson, J. W. and Wu, T. Y.

    Article  Google Scholar 

  8. Nemat-Nasser, S.,J. Appl. Mech.,50 (1983), 1114–1126.

    Article  MATH  Google Scholar 

  9. Hill, R. and Havner, K.,J. Mech. Phys. Solids,30 (1982).

  10. Taylor, G. I.,J. Inst. Metals,62 (1938), 307–324.

    Google Scholar 

  11. Bishop, J. F. W. and Hill, R.,Phil. Mag.,42 (1951), 414–427; 1298–1307.

    MATH  MathSciNet  Google Scholar 

  12. Lin, T. H.,J. Mech. Phys. Solids,5 (1957), 143.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kroner, E.,Acta Met.,9 (1961), 155–161.

    Article  Google Scholar 

  14. Budiansky, B. and Wu, T. T., Proc. 4th U.S. National Cong. Appl. Mech., 1962, 1175–1185.

  15. Hill, R.,J. Mech. Phys. Solids,13 (1965), 89–101.

    Article  MATH  Google Scholar 

  16. Berveiller, M. and Zaoui, A.,J. Mech. Phys. Solids,26 (1979), 325–344.

    Article  Google Scholar 

  17. Weng, G. J. and Chiang, C. R.,Int. J. Solids and Struct.,20 (1984), 689.

    Article  MATH  Google Scholar 

  18. Weng, G. J.,Int. J. Plasticity,3 (1987), 315–339.

    Article  MATH  Google Scholar 

  19. Lin, G. J., J. Engn. Mater. Tech.,106 (1984), 290.

    Article  Google Scholar 

  20. Budiansky, B. Dow, N. F. Peters, R. W. and Shepherd, R. P., in Proceedings of 1st U. S. National Congress. Applied Mechanics, 1951, 503–512.

  21. Batdorf, S. B. and Budiansky, B., NACA TN 1871, 1949.

  22. Hill, R., in Advances in Appl. Mech., Vol. 18 (1978), 1.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by Chinese Academy of Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsu-chiang, W. Macro slip theory of plasticity for polycrystalline solids. Acta Mech Sinica 7, 323–334 (1991). https://doi.org/10.1007/BF02486740

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486740

Key Words

Navigation