Skip to main content
Log in

Ultralight porous metals: From fundamentals to applications

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts. The main aim is to develop lightweight structures which are stiff, strong, able to absorb large amount of energy and cheap for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious consideration for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find a widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to be included in a design. This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  2. Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two-dimensional foams.J Mech Phys Solids, 1999, 47(11): 2235–2272

    Article  MATH  Google Scholar 

  3. Ashby MF, Evans AG, Fleck NA, et al. Metal Foams: a Design Guide. Boston: Butterworth-Heinemann, 2000

    Google Scholar 

  4. Sugimura Y, Meyer J, He MY, et al. On the mechanical performance of closed cell Al alloy foams.Acta Mater, 1997, 45(12): 5345–5359

    Article  Google Scholar 

  5. Evans AG, Hutchinson JW, Ashby MF. The thermostructural performance of cellular metal systems and components.Current Opinions in Solid State & Material Sicence, 1998, 3(3): 288–303

    Article  Google Scholar 

  6. Deshpande VS, Fleck NA. Isotropic constitutive model for metallic foams.J Mech Phys Solids, 2000, 48(6–7): 1253–1283

    Article  MATH  Google Scholar 

  7. Chen C, Lu TJ, Fleck NA. Effect of inclusions and holes on elastic moduli and yield strength of cellular solids.Int J Mech Sci, 2001, 43(2): 487–504

    Article  MATH  Google Scholar 

  8. Lu TJ, Chen C. Thermal transport and fire retardance properties of cellular aluminium alloys.Acta Mater, 1999, 47(5): 1469–1485

    Article  Google Scholar 

  9. Gibson LJ, Ashby MF, Zhang J, et al. Failure surfaces for cellular materials under multi-axial loads—(I) Modeling.Int J Mech Sci, 1989, 31(9): 635–665

    Google Scholar 

  10. Puso MA, Govindjee S. Phenomenological constitutive model for rigid polymeric foam.ASME MD, 1995, 68: 159–176

    Google Scholar 

  11. Zhang J, Lin Z, Wong A, et al. Constitutive modeling and material characterisation of polymeric foams.ASME J Engng Mater Tech, 1997, 119(3): 284–291

    Google Scholar 

  12. Chen C, Lu TJ. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids.Int J Solids Struc, 2000, 37(52): 7769–7786

    Article  MATH  Google Scholar 

  13. Lu TJ, Ong JM. Characterisation of aluminium alloy foams with closed and semi-open cells.J Mater Sci, 2001, 36(11): 2773–2786

    Article  Google Scholar 

  14. Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids.J Mech Phy Solids, 1992, 40(6): 1377–1397

    Article  MATH  Google Scholar 

  15. Tvergaard V, Hutchinson JW. Effect ofT-stress on mode-I crack growth resistance in a ductile solid.Int J Solids & Struct, 1994, 31(6): 823–833

    Article  MATH  Google Scholar 

  16. Suo Z, Bao G, Fan B. Delamination R-curves due to damage.J Mech Phys Solids, 1992, 40(1) 1–16

    Article  Google Scholar 

  17. Soutis C, Fleck NA, Smith PA. Failure prediction technique for compression loaded Carbon Fiber-Epoxy Laminate with open hole.J Composite Mater, 1991, 25(11): 1476–1498

    Google Scholar 

  18. Bao G, Suo Z. Remarks on crack-bridging concepts.Appl Mech Rev, 1992, 45(3): 355–366

    Article  Google Scholar 

  19. Chen C, Lu TJ, Fleck NA. The mode I crack growth resistance of metallic foams.J Mech Phys Solids, 2001, 49(2): 231–259

    Article  MATH  Google Scholar 

  20. Bastawros AF, Evans AG, Stone HA. Evaluation of cellular metal heat dissipation media. Technical Report MECH-325, DEAS, Harvard University, 1998

  21. Lu TJ, Stone HA, Ashby MF. Heat transfer in open-cell metal foams.Acta Mater, 1998, 46 (10): 3619–3635

    Article  Google Scholar 

  22. Calmidi VC, Mahajan RL. Forced convection in high porosity metal foams.Trans of ASME, J of Heat Transfer, 2000, 122(3): 557–565

    Article  Google Scholar 

  23. Hunt ML, Tien CL. Effects of thermal dispersion on forced convection in fibrous media.Int J Heat Mass Transfer, 1988, 31(2): 301–309

    Article  Google Scholar 

  24. Bastawros AF. Effectiveness of open-cell metallic foams for high power electronic cooling. IMECE Paper, Thermal Management of Electronics, ASME Proc HTD-361-3/PID-3, 1997. 211–217

  25. Kim SY, Paek JW, Kang BH. Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger.Trans ASME J of Heat Transfer, 2000, 122(3): 572–578

    Article  Google Scholar 

  26. Davies GJ, Zhen S. Review: metallic foams: their production, properties and applications.J Material Sci, 1983, 18(7): 1899–1911

    Article  Google Scholar 

  27. Lu TJ, Hess A, Ashby MF. Sound absorption in metallic foams.J Applied Physics, 1999, 85 (11): 7528–7539

    Article  Google Scholar 

  28. Han F, Zhu G, Liu C. Examination of acoustic absorption characteristics of foamed aluminum.Acustica-Acta Acustica, 1998, 84(2): 573–576

    Google Scholar 

  29. Wang X, Lu TJ. Optimised acoustic properties of cellular solids.J Acoust Soc Am, 1999, 106(2): 756–765

    Article  Google Scholar 

  30. Delany ME, Bazley EN. Acoustical properties of fibrous absorbent materials.Appl Acoust, 1969, 3(1): 105–116

    Google Scholar 

  31. Morse PM, Ingard KU. Theoretical Acoustics. New York: McGraw-Hill, 1968

    Google Scholar 

  32. Johnson DL, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluidsaturated porous media.J Fluid Mech, 1987, 176(10): 379–402

    Article  MATH  Google Scholar 

  33. Allard JF, Champoux Y. New empirical equations for sound propagation in rigid frame fibrous materials.J Acoust Soc Am, 1992, 91(4): 3346–3353

    Article  Google Scholar 

  34. Zwikker C, Kosten CW. Sound Absorbing Materials. New York: Elsevier, 1949

    Google Scholar 

  35. Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low frequency range.J Acoust Soc Am, 1956, 28(5): 168–178

    Article  MathSciNet  Google Scholar 

  36. Attenborough K. Acoustical characteristics of rigid fibrous absorbents and granular materials.J Acoutc Soc Am, 1983, 73(2): 785–799

    Article  MATH  Google Scholar 

  37. Allard JF, Depollier C, Nicolas J, et al. Proprietes acoustiques des materiaux poreux satures d'air et theorie de Biot.J Acoust, 1990, 3(1): 29–38

    Google Scholar 

  38. Stinson MR, Champoux Y. Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries.J Acoust Soc Am, 1992, 91(11): 685–695

    Article  Google Scholar 

  39. Wilson DK. Relaxation-matched modeling of propagation through porous media, including fractal pore structure.J Acoust Soc Am, 1993, 94(8): 1136–1145

    Article  Google Scholar 

  40. Lu TJ, Chen F, He DP. Sound absorption of cellular metals with semi-open cells.J Acous Soc Am, 2000, 108(4): 1697–1709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the U.S. Office of Naval Research (ONR/ONRIFO grant number N000140110271), the U.K. Engineering and Physical Sciences Research Council (EPSRC grant number EJA/U83), and the Chinese State Key Lab. Foundation of Xi'an Jiaotong University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tianjian, L. Ultralight porous metals: From fundamentals to applications. Acta Mech Sinica 18, 457–479 (2002). https://doi.org/10.1007/BF02486571

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486571

Key Words

Navigation