Skip to main content
Log in

MD simulation for nanocrystals

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2004

Abstract

Molecular dynamic (MD) provided anab initio simulation for nano-scale mechanical behavior of materials, provided that the inter-atomic potential is accurately prescribed. MD is particularly suitable in simulating the formation, the deformation, and the evolution of nanocrystals under a fast strain rate. To tackle large scale system and nano-seconds time duration, parallel algorithm is desired. The present paper reviews the recent advances in MD simulation for nanocrystals rithm is desired. The present paper reviews the recent advances in MD simulation for nanocrstals with attention focused on the applications toward nanomechanics. The examined issues are: formation of nanocrystalline metals, nanoindentation on nancorystals, fast deformation of nanocrystals, orderdisorder transition, and nano-particle impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang W, Lee WB. Mesoplasticity and Its Applications. Berlin: Springer-Verlag, 1993

    Google Scholar 

  2. Yang W. Macroscopic and Microscopic Fracture Mechanics. Beijing: National Defence Industry Press, 1995 (in Chinese)

    Google Scholar 

  3. Yang W. Mechatronic Reliability. Berlin: TUP-Springer-Verlag, 2002

    Google Scholar 

  4. Freund LB. The mechanics of electronic materials.Int J Solids & Structs, 2000, 37: 185–196

    MATH  MathSciNet  Google Scholar 

  5. Freund LB, Johnson HT. Influence of strain on functional characteristics of nanoelectronic devices.J Mech Phys Solids, 2001, 49: 1925–1935

    MATH  Google Scholar 

  6. Johnson HT, Freund LB, Akyuz CD et al. Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires.J Applied Physics, 1998, 84: 3714–3725

    Google Scholar 

  7. Johnson HT, Nguyen V, Bower AF. Simulated selfassembly and optoelectronic properties of InAs/GaAs quantum dot arrays.J Applied Physics, 2002, 92: 4653–4663

    Google Scholar 

  8. Drexler KE. Nanosystems: Molecular Machinery, Manufacturing and Computation. New York: John Wiley & Sons Inc, 1992

    Google Scholar 

  9. Yang W, Ma XL, Wang HT, et al. Advances in nanomechanics.Advances in Mechanics, 2002, 32: 161–174 (in Chinese)

    Google Scholar 

  10. Gerberich WW, Yang W eds., Interfacial and Nanoscale Failure. In: Milne I, Ritchie RO, Karihaloo B eds. Comprehensive Structural Integrity, Vol. 8. Oxford: Elsevier Ltd, July 2003

    Google Scholar 

  11. Freund B, Suresh S Thin Film Materials, Cambridge: Cambridge University Press, November 2003

    Google Scholar 

  12. Liu F, Huang MH, Rugheimer PP, et al. Nanostressors and the nanomechanical response of a thin silicon film on an insulator.Physical Review Letters, 2002, 89 (13): art no 136101

    Google Scholar 

  13. Bhushan B. Handbook of Micro/Nano Tribology. CRC Series of Mechanics and Materials Science, 1999, Boca Raton, Florida, CRC Press, 1999

    Google Scholar 

  14. He G, Muser MH, Robbins MO. Adsorbed layers and the origin of static friction.Science, 1999, 284: 1650–1652

    Google Scholar 

  15. Chasiotis I, Knauss W. Experimentation at the micron and submicron scake. In: Gerberich WW, Yang W eds. Interfacial and Nanoscale Failure, chap. 8.02, Oxford: Elsevier Ltd, 2003. 41–88

    Google Scholar 

  16. Dai FL, Xing YM. Nano-moire method.Acta Mechanica Sinica, 1999, 15: 283–288

    Google Scholar 

  17. Gleiter H. Nanocrystalline materials.Prog Mater Sci, 1989, 33: 223–315

    Google Scholar 

  18. Gleiter H. Nanostructured materials: basic concepts and microstructure.Acta Mater, 2000, 48: 1–29

    Google Scholar 

  19. Celarie F, Prades S, Bonamy D, et al. Glass breaks like metal, but at the nanometer scale.Physical Review Letters, 2003, 90(7): art no 075504

    Google Scholar 

  20. Yang Q, Yang W. Three-dimensional analysis of scale dependence of sub-micron polycrystals due to configuration entropy.Acta Mechanica Sinica, 2001, 17(2): 172–182

    Google Scholar 

  21. Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature.Science, 2000, 287(5457): 1463–1466

    Google Scholar 

  22. McFadden X, Mishra RS, Valiev RZ, et al. Lowtemperature superplasticity in nanostructured nickel and metal alloys.Nature, 1999, 398(6729): 684–686

    Google Scholar 

  23. Derlet PM, Meyer R, Lewis LJ, et al. Low-frequency vibrational properties of nanocrystalline materials.Physical Review Letters, 2001, 87(20): art. no. 205501

    Google Scholar 

  24. Champion Y, Langlois C, Guerin-Mailly S, et al. Nearperfect elastoplasticity in pure nanocrystalline copper.Science, 2003, 300(5617): 310–311

    Google Scholar 

  25. Schiøtz J, Di Tolla FD, Jacobsen KW. Sottening of nanocrystalline metals at very small grain sizes.Nature, 1998, 391: 561–563

    Google Scholar 

  26. Van Swygenhoven H. Polycrystalline materials: Grain boundaries and dislocations.Science, 2002, 296: 66–67

    Google Scholar 

  27. Samaras M, Derlet PM, Van Swygenhoven H, et al. Computer simulation of displacement cascade in nanocrystalline Ni.Physical Review Letters, 2002, 88(12): art. no. 125505

    Google Scholar 

  28. Schiøtz J. Simulations of nanocrystalline metals at the atomic scale. What can we do? What can we trust? In: Dinesen AR et al. eds. Proceedings of the 22nd International Symposium on Materials Science: Science of Metastable and Nanocrystalline Alloys—Structure, Properties and Modelling, Roskilde: Risø National Laboratory, Sep 2001, 127–139

    Google Scholar 

  29. Liang H, Wang X, Wu H, et al. Molecular dynamics simulation of length scale effects on tension nanocrystalline copper wire.Acta Mechanica Sinica, 2002, 34(2): 208–215 (in Chinese)

    Google Scholar 

  30. Cai B, Kong QP, Lu L, et al. Interface controlled diffusional creep of nancrystalline pure copper.Scr Metall, 1999, 41: 755–759

    Google Scholar 

  31. Karch J, Birringer R, Gleiter H, Ceramics ductile at low temperature.Nature, 1987, 330: 556–558

    Google Scholar 

  32. Ashby MF, Verrall RA. Diffusion-accommodated flow and superplasticity.Acta Metallurgica, 1973, 21: 149–163

    Google Scholar 

  33. Yang W, Hong W. Numerical simulation for deformation of nano-grained metals.Acta Mechanica Sinica, 2002, 18: 506–515

    Google Scholar 

  34. Ovid'ko IA. Materials science: deformation of nanostructures.Science, 2002, 295: 2386–2386

    Google Scholar 

  35. Murayama M, Howe JM, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe.Science, 2002, 295(5564): 2433–2435

    Google Scholar 

  36. Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach.J Mater Sci Technol, 1999, 15(3): 193–197

    MATH  Google Scholar 

  37. Lu J, Lu K. Surface Nanocrystallization (SNC) of Materials and Its Effect on Mechanical Behavior. In: Gerberich WW, Yang W, eds, Interfacial and Nanoscale Failure, chap 8.14, Oxford: Elsevier Science, 2003. 495–528

    Google Scholar 

  38. Tao NR, Wang ZB, Tong WP, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment.Acta Materialia, 2002, 50(18): 4603–4616

    Google Scholar 

  39. Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperatures.Science, 2003, 299(5607): 686–688

    Google Scholar 

  40. Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening.Materials Science and Engineering A, 2000, 286(1): 91–95

    Google Scholar 

  41. Liu G, Wang SC, Lou XF, et al. Low carbon steel with nanostructured surface layer induced by highenergy shot peening.Scripta Materialia, 2001, 44(8–9): 1791–1795

    Google Scholar 

  42. Ma XL, Wang W, Yang W. Simulation for surface selfnanocrystallization under shot peening.Acta Mechanica Sinica, 2003, 19(2): 172–180

    Google Scholar 

  43. Gerberich WW, Kramer DE, Tymiak NI, et al. Nanoindentation-induced defect-interface interactions: Phenomena, methods and limitations.Acta Materialia, 1999, 47: 4115–4123

    Google Scholar 

  44. Oliver WC, Pharr GM, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments.J Materials Research, 1992, 7: 1564–1583

    Google Scholar 

  45. Bahr DF, Kramer DE, Gerberich WW. Nonliner deformation mechanisms during nanoindentation.Acta Mater, 1998, 46: 3605–3617

    Google Scholar 

  46. Adams MJ. Nanoindentation of particulate coating.J Mater Res, 1999, 14: 2344–2350

    Google Scholar 

  47. Chang T, Guo W, Li G. Analysis of microbucking for monomolecular layers adhering to a substrate.Acta Mechanica Sinica, 2002, 18(6): 608–620

    Google Scholar 

  48. Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity.J Mech Phys Solids, 1998, 46: 411–425

    MATH  Google Scholar 

  49. Tymiak NI, Kramer DE, Bahr DF, et al. Plastic strain and strain gradients at very small indentation depths.Acta Materialia, 2001, 49: 1021–1034

    Google Scholar 

  50. Gerberich WW, Nelson JC, Lilleodden ET, et al. Indentation induced dislocation nucleation: The initial yield point.Acta Materialia, 1996, 44: 3585–3598

    Google Scholar 

  51. Gouldstone A, Van Vliet KJ, Suresh S. Simulation of defect nucleation in a crystal.Nature, 2001, 411: 656–656

    Google Scholar 

  52. Yang W, Ma XL, Wang HT, et al. Advances in nanomechanics.Advances in Mechanics, 2002, 32(2): 161–174 (in Chinese)

    Google Scholar 

  53. Hermann DW. Computer Simulation Methods in Theoretic Physics, 2nd Edition, Berlin: Springer-Verlag, 1990

    Google Scholar 

  54. Cicero G, Pizzagalli L, Catellani A. Ab initio study of misfit dislocations at the SiC/Si(001) interface.Physical Review Letters, 2002, 89(15): art. no. 156101

    Google Scholar 

  55. Yang W, Tan HL. Chaotic atom motion excited by fracture.Material Scientific Research International, 1996, 2: 1–12

    Google Scholar 

  56. Bulatov V, Abraham FF, Kubin L, et al. Connecting atomistic and mesoscale simulations of crystal plasticity.Nature, 1998, 391(6668): 669–672

    Google Scholar 

  57. Ortiz M, Phillips R. Nanomechanics of defects in solids.Advances in Applied Mechanics, 1999, 36: 1–79

    Google Scholar 

  58. Phillips R. Crystals, Defects and Microstructures-Modeling across Scales. Cambridge: Cambridge Press, 2001

    Google Scholar 

  59. Phillpot SR, Wolf D, Gleiter H. Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material.J Appl Phys, 1995, 78(2): 847–861

    Google Scholar 

  60. Wass J. 3-D Molecular Dynamics version 2.5.Science, 2000 288(5469): 1191–1191

    Google Scholar 

  61. Moseler M, Landman U. Formation, stability, and breakup of nanojets.Science, 2000, 289(5482): 1165–1169

    Google Scholar 

  62. Eggers J. Dynamics of liquid nanojets.Physical Review Letters, 2002, 89(8): art. no. 084502

    Google Scholar 

  63. Feibelman PJ. Partial dissociation of water on Ru(0001).Science, 2002, 295(5552): 99–102

    Google Scholar 

  64. Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing.Nature, 2002, 416 (6879): 409–413

    Google Scholar 

  65. Xing YM, Dai FL, Yang W. Experimental study about nano-deformation field near quasi-cleavage crack tip.Science in China A, 2000, 43: 963–968

    Article  Google Scholar 

  66. Swadener JG, Baskes MI, Nastasi M. Molecular dynamics simulation of brittle fracture in silicon.Physical Review Letters, 2002, 89(8): art. no. 085503

    Google Scholar 

  67. Abraham FF, Gao H. How fast can cracks propagate?Phys Rev Lett, 2000, 84: 3113–3116

    Google Scholar 

  68. Abraham FF, Walkup R, Gao H, et al. Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture.Proc National Academy of Sciences USA, 2002, 99: 5777–5782

    Google Scholar 

  69. Zhou SJ, Preston DL, Lomdahl PS, et al. Largescale molecular dynamics simulations of dislocation intersection in copper.Science, 1998, 279(5356): 1525–1527

    Google Scholar 

  70. Christiansen J, Morgenstern K, Schiøtz J, et al. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics.Phys Rev Lett, 2002, 88: art no 206106

    Google Scholar 

  71. Abraham FF, Walkup R, Gao H, et al. Simulating materials failure by using up to one billion atoms and the world's fastest computer: work-hardening.Proc National Academy of Sciences USA 2002, 99: 5783–5787

    Google Scholar 

  72. Li S, Gao K, Qiao L, et al. Molecular dynamic simulation of the role of dislocations in microcrack healing.Acta Mechanica Sinica, 2000, 16(4): 366–373

    MATH  Google Scholar 

  73. Ding JQ, Chen ZY. Molecular dynamics calculation of thermodynamic properties of nanocrystaline α-iron.Acta Mechanica Sinica, 2000, 32(6): 739–743 (in Chinese)

    Google Scholar 

  74. Allen MP, Tildesley DJ. Computer Simulation of Liquids, Oxford: Clarendon, 1989

    MATH  Google Scholar 

  75. Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation.Physical Review B, 1998, 58: 11085–11088

    Google Scholar 

  76. Schiøtz J, Vegge T, Di Tolla FD, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals.Physical Review B, 1999, 60: 11971–11983

    Google Scholar 

  77. Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys.Physical Review B, 1986, 33: 7983–7991

    Google Scholar 

  78. Oh DJ, Johnson RA. Simple embedded atom method model for fcc and hcp metals.J Mater Res, 1988, 3: 471–478

    Google Scholar 

  79. Baskes MI, Nelson JS, Wright AF. Semiempirical modified embedded-atom potentials for silicon and germanium.Phys Rev B 1989, 40: 6085–6100

    Google Scholar 

  80. Johnson RA. Alloy models with the embedded-atom method.Phys Rev B, 1989, 39: 12554–12559

    Google Scholar 

  81. Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals.Philosophical Magazine A, 1984, 50(1): 45–55

    Google Scholar 

  82. Abraham FF. Atomic simulations of crack propagation. In: The Society of Materials Sciences of Japan ed. Materials Science for the 21st Century, Invited papers, vol. A, May 2001. 195–202

  83. Beazley DM, Lomdahl PS. Message-passing multi-cell molecular dynamics on the connection machine.Paralled Computing 1994, 20: 173–195

    Google Scholar 

  84. Plimpton S. Fast parallel algorithms for short-range molecular dynamics.J of Computational Physics, 1995, 117: 1–19

    MATH  Google Scholar 

  85. Murty R, Okunbor D. Efficient parallel algorithms for molecular dynamics simulations.Parallel Computing, 1999, 25: 217–230

    MATH  Google Scholar 

  86. Schwichtenberg H, Winter G, Wallmeier H. Acceleration of molecular mechanic simulation by parallelization and fast multipole techniques.Parallel Computing, 1999, 25: 535–546

    MATH  Google Scholar 

  87. Mo ZY, Zhang ZL. Parallelization and optimization of two-dimensional molecular dynamics program (MDP).Computational Physics, 2000, 17: 193–198 (in Chinese)

    Google Scholar 

  88. Phythian WJ, Stoller RE, Foreman AJE, et al. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution.J Nucl Mater, 1995, 223: 245–261

    Google Scholar 

  89. Heinisch HL. Simulating the production of free defects in irradiated metals.Nucl Instrum Methods Phys Res B, 1995, 102: 47–50

    Google Scholar 

  90. Heinisch HL, Singh BN. Stochastic annealing simulation of differential defect production in high energy cascades.J Nucl Mater, 1996, 232: 206–213

    Google Scholar 

  91. Jaraiz M, Gilmer GH, Poate JM, et al. Atomistic calculations of ion implantation in Si: Point defect and transient enhanced diffusion phenomena.Appl Phys Lett, 1996, 68: 409–411

    Google Scholar 

  92. Henkelman G, Jonsson H. Multiple time scale simulations of metal crystal growth reveal the importance of multiatom surface processes.Physical Review Letters, 2003, 90(11): art, no. 116101

    Google Scholar 

  93. Thomson R, Zhou SJ, Carlsson AE, et al. Lattice imperfections studied by use of lattice Green's functions.Phys Rev B: Condens Matter, 1992, 46: 10613–10622

    Google Scholar 

  94. Tadmor EB, Ortiz M, Phillips r. Quasicontinuum analysis of defects in solids.Philos Mag A, 1996, 73: 1529–1563

    Google Scholar 

  95. Sinclair J, Gehlen PC, Hoagland RG, et al. Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling.J Appl Phys, 1978, 49: 3890–3897

    Google Scholar 

  96. Kohlhoff S, Gumbsch P, Fischmeister HF. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model.Philos Mag A, 1991, 64: 851–878

    Google Scholar 

  97. Yang W, Tan HL, Guo TF. Evolution of crack tip process zone.Modelling and Simulation in Material Science and Engineering, 1994, 2: 767–782

    Google Scholar 

  98. Tan HL, Yang W. Atomistic/continuum simulation of interfacial fracture, Part I: Atomistic simulation.Acta Mechanica Sinica, 1994a, 10: 150–161

    Google Scholar 

  99. Tan HL, Yang W. Atomistic/continuum simulation o of interfacial fracture, Part II: Atomistic/dislocation/continuum simulation.Acta Mechanica Sinica, 1994b, 10: 237–249

    Google Scholar 

  100. Tan HL, Nairn JA. Hierarchical, adaptive, material point method for dynamic energy release rate calculations.Comput Methods Appl Mech Engrg, 2002, 191: 2095–2109

    Google Scholar 

  101. Goddard WA, Deng WG, Xu X, et al. First principles simulations of catalysis and nanotechnology.Abstracts of papers of the American Chemical Society, 2001, 221: 70-CATL, Part 2

    Google Scholar 

  102. Wang CZ, Chan CT, Ho KM. Tight-binding molecular dynamics study of defects and disorder in Si.Proceedings—The Electrochemical Society, 1990, 91: 463–473

    Google Scholar 

  103. Zhu J. Ab initio pseudopotential calculations of dopant diffusion in Si.Computational Materials Science, 1998, 12: 309–318

    Google Scholar 

  104. Pasquarello A, Hybertsen MS, Car R. Interface structure between silicon and its oxide by first-principles molecular dynamics.Nature, 1998, 396(6706): 58–60

    Google Scholar 

  105. Ortega J. First-principles methods for tight-binding molecular dynamics.Computational Materials Science, 1998, 12: 192–209

    MathSciNet  Google Scholar 

  106. Richter A, Ries R, Smith R, et al. Nanoindentation of diamond, graphite and fullerene films.Diamond and Related Materials, 2001, 9: 170–184

    Google Scholar 

  107. Ma XL, Yang W. Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation.Nanotechnology, 2003, 14: 1208–1215

    Google Scholar 

  108. Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters.J Phys Chem, 1987, 91: 4950–4963

    Google Scholar 

  109. Zallen R. The Physics of Amorphous Solids. New York: Wiley-Interscience, 1983

    Google Scholar 

  110. Grom GF, Lockwood DJ, McCaffrey JP, et al. Ordering and self-organization in nanocrystalline silicon.Nature, 2000, 407(6802): 358–361

    Google Scholar 

  111. Nam HS, Hwang NM, Yu BD, et al. Formation of an icosahedral structure during the freezing of gold nanoclusters: Surface-induced mechanism.Physical Review Letters, 2002, 89(27): art. no. 275502

    Google Scholar 

  112. Moldovan D, Yamakov V, Wolf D, et al. Scaling behavior of grain-rotation-induced grain growth.Physical Review Letters, 2002, 89(20): art. no. 206101

    Google Scholar 

  113. Belak J, Boercher DB, Stowers IF. Simulation of nanometer-scale deformation of metallic and ceramic surfaces.MRS Bulletin, 1993, 5: 55–60

    Google Scholar 

  114. Komvopoulos K, Yan W. Molecular dynamics simulation of single and repeated indentation.J Appl Phys, 1997, 82: 4823–4830

    Google Scholar 

  115. Walsh P, Kalia RK, Nakano A, et al. Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study.Applied Physics Letters, 2000, 77: 4332–4334

    Google Scholar 

  116. Gannepalli A, Mallapragada SK. Molecular dynamics studies of plastic deformation during silicon nanoindentation.Nanotechnology, 2001, 12: 250–257

    Google Scholar 

  117. Christopher D, Smith R, Richter A. Atomistic modelling of nanoindentation in iron and silver.Nanotechnology, 2001, 12: 372–383

    Google Scholar 

  118. Christopher D, Smith R, Richter A. Nanoindentation of carbon materials.Nuclear Instruments and Methods in Physics Research B, 2001, 180: 117–124

    Google Scholar 

  119. Li J, Van Vliet KJ, Zhu T, et al. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals.Nature, 2002, 418: 307–310

    Google Scholar 

  120. Feichtinger D, Derlet PM, Van Swygenhoven H. Atomistic simulation of spherical indentations in nanocrystalline gold.Phys Rev B, 2003, 67: 024113

    Google Scholar 

  121. Phillpot SR, Wang J, Wolf D, et al. Computer simulation of the structure and dynamics properties of grain boundaries in a nanocrystalline model material.Materials Science and Engineering A, 1995, 204: 76–82

    Google Scholar 

  122. Van Swygenhoven H, Caro A. Molecular dynamics computer simulation of nanophase Ni: structure and mechanical properties.NanoStructured Materials, 1997, 9: 669–672

    Google Scholar 

  123. Van Swygenhoven H, Caro A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation.Appl Phys Lett, 1997, 71(12): 1652–1654

    Google Scholar 

  124. Van Swygenhoven H, Caro A. Plastic behavior of nanophase metals studied by molecular dynamics.Phys Rev B, 1998, 58: 11246–11251

    Google Scholar 

  125. Yamakov V, Wolf D, Salazar M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular dynamics simulation.Acta Materialia, 2001, 49: 2713–2722

    Google Scholar 

  126. Lu L, Li SX, Lu K. An abnormal strain rate effect of tensile behavior in nanocrystalline copper.Scripta Materialia, 2001, 45: 1163–1169

    Google Scholar 

  127. Derlet PM, Van Swygenhoven H. Length scale effects in the simulation of deformation properties of nanocrystalline metals.Scripta Materialia, 2002, 47: 719–724

    Google Scholar 

  128. Van Swygenhoven H, Farkas D, Caro A. Grainboundary structures in polycrystalline metals at the nanoscale.Phys Rev B, 2000, 62: 831–838

    Google Scholar 

  129. Cleveland CL, Luedtke WD, Landman U. Melting of gold clusters: icosahedral precursors.Physical Review Letters, 1998, 81(10): 2036–2039

    Google Scholar 

  130. Deb SK, Wilding M, Somayazulu M, et al. Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon.Nature, 2001, 414(6863): 528–530

    Google Scholar 

  131. Butler S, Harrowell P. Factors determining crystalliquid coexistence under shear.Nature, 2002, 415(6875): 1008–1011

    Google Scholar 

  132. Donnelly SE, Birtcher RC, Allen CW, et al. Ordering in a fluid inert gas confined by flat surfaces.Scince, 2002, 296(5567): 507–510

    Google Scholar 

  133. Frenkel AI, Kolobov AV, Robinson IK, et al. Direct separation of short range order in intermixed nanocrystalline and amorphous phases.Physical Review Letters, 2002, 89(28): art. no. 285503

    Google Scholar 

  134. Jacobsen WK, Schiøtz J. Computational materials science-nanoscale plasticity.Nature-Materials, 2002, 1: 15–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (101212202 and 90205023)

An erratum to this article is available at http://dx.doi.org/10.1007/BF02493570.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiling, M., Wei, Y. MD simulation for nanocrystals. Acta Mech Sinica 19, 485–507 (2003). https://doi.org/10.1007/BF02484542

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02484542

Key Words

Navigation