Materials and Structures

, Volume 36, Issue 7, pp 426–438 | Cite as

Chemomechanics of concrete at finer scales

  • F. -J. Ulm
Article

Abstract

Concrete, like many other materials (whether man-made, geological or biological), is a highly heterogeneous material with heterogeneities that manifest themselves at multiple scales. As new experimental techniques such as nanoindentation have provided unprecedented access to micro-mechanical properties of materials, it becomes possible to identify the mechanical effects of chemical reactions at the micro-scale, where the reactions occur, and trace these micro-chemo-mechanical effects through upscaling techniques to the macro-scale. The focus of this paper is to review recent developments of a microchemomechanics theory which ultimately shall make it possible to capture chemomechanical deterioration processes at the scale where physical chemistry meets mechanics. This is illustrated through application of the theory to early-age concrete and calcium leaching, and an outlook to biologically mediated deterioration processes in solid materials is given.

Keywords

Cementitious Material Concrete Research Rigid Inclusion Hydration Degree Chemical Softening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Le béton comme beaucoup d'autres matériaux, soit artificiels, géologiques ou biologiques, est un matériau très hétérogène, dont les hétérogénéités se manifestent à de multiples échelles. Comme des techniques expérimentales nouvelles, telle la nano-indentation, ont donné un accès non-précédent aux propriétés micromécaniques des matériaux, il est possible d'identifier les effets mécaniques des réactions chimiques à l'échelle microscopique, où les réactions ont lieu, et tracer ces effets au travers des méthodes de changement d'échelle vers l'échelle macroscopique. Cet article fait le point sur le développement d'une modélisation micro-chimicomécanique qui a comme but de modéliser la détérioration chimico-mécanique à partir de l'échelle physico-chimique. Ces développements sont illustrés au travers des applications au béton au jeune âge et à la lixiviation des bétons. Enfin, l'extension de cette modélisation aux processus de détérioration bio-chimique des matériaux est mise en perspective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coussy, O., ‘Mechanics of porous media’, (J. Wiley & Sons, Chichester, UK, 1995).MATHGoogle Scholar
  2. [2]
    Coussy, O. and Ulm, F.-J., ‘Creep and plasticity due to chemomechanical couplings’,Archive of Applied Mechanics 66 (1996) 523–535.CrossRefGoogle Scholar
  3. [3]
    Sercombe, J., Ulm, F.-J. and Mang, H.A., ‘Consistent return mapping algorithm for chemoplastic constitutive laws with internal couplings’,Int. J. Numerical Methods in Engineering 47 (2000) 75–100.CrossRefGoogle Scholar
  4. [4]
    Ulm, F.-J. and Coussy, O., ‘Modeling of thermochemomechanical couplings of concrete at early ages’,Journal of Engineering Mechanics, ASCE 121 (7) (1995) 785–794.CrossRefGoogle Scholar
  5. [5]
    Ulm, F.-J. and Coussy, O., ‘Couplings in early-age concrete: from material modeling to structural design’,Int. Journal of Solids and Structures 35 (31–32) (1998) 4295–4311.CrossRefGoogle Scholar
  6. [6]
    Cervera, M., Oliver, J. and Prato, T., ‘Thermo-chemo-mechanical model for concrete. I: Hydration and aging’,Journal of Engineering Mechanics, ASCE 125 (9) (1999) 1018–1027.CrossRefGoogle Scholar
  7. [7]
    Cervera, M., Oliver, J. and Prato, T., ‘Thermo-chemomechanical model for concrete. II: Damage and creep’,Journal of Engineering Mechanics, ASCE 125 (9) (1999) 1028–1039.CrossRefGoogle Scholar
  8. [8]
    Sercombe, J., Hellmich, C., Ulm, F.-J. and Mang, H.A., ‘Modeling of early-age creep of shoterete. I: Model and model parameters’,Journal of Engineering Mechanics, ASCE 126 (3) (2000) 284–291.CrossRefGoogle Scholar
  9. [9]
    Ulm, F.-J. and Coussy, O., ‘Strength growth as chemoplastic hardening in early age concrete’,Journal of Engineering Mechanics, ASCE 122 (12) (1996) 1123–1132.CrossRefGoogle Scholar
  10. [10]
    Hellmich, C., Ulm, F.-J. and Mang, H.A., ‘Multisurface chemoplasticity. I: Material model for shotcrete’,Journal of Engineering Mechanics, ASCE 125 (6) (1999) 692–701.CrossRefGoogle Scholar
  11. [11]
    Hellmich, C., Ulm, F.-J. and Mang, H.A., ‘Consistent linearization in finite element analysis of coupled chemothermal problems with exo- or endothermal reactions’,Computational Mechanics 24 (4) (1999) 238–244.CrossRefGoogle Scholar
  12. [12]
    Ulm, F.-J. and Coussy, O., ‘What is a ‘massive’ concrete structure at early ages?—Some dimensional arguments’,Journal of Engineering Mechanics, ASCE 127 (5) (2001) 512–522.CrossRefGoogle Scholar
  13. [13]
    Ulm, F.-J., Coussy, O. and Bažant, Z.P., ‘The ‘Chunnel’ fire. I. Chemoplastic softening in rapidly heated concrete’,Journal of Engineering Mechanics, ASCE 125 (3) (1999) 272–282.CrossRefGoogle Scholar
  14. [14]
    Larive, C., ‘A combined experimental-theoretical approach for the understanding of the alkali reaction and of its mechanical effects’, Monograph LPC OA 28, (Laboratoires des Ponts et Chaussées, Paris) [in French, partially translated into English](1998).Google Scholar
  15. [15]
    Ulm, F.-J., Coussy, O., Li, K. and Larive, C., ‘Thermo-chemomechanics of ASR-expansion in concrete structures’,Journal of Engineering Mechanics, ASCE 126 (3) (2000) 233–242.CrossRefGoogle Scholar
  16. [16]
    Li, K. and Coussy, O., ‘Concrete ASR degradation: from material modeling to structure assessment’,Concrete Science and Engineering, RILEM4 (13) (2002) 35–46.Google Scholar
  17. [17]
    Li, K., ‘Chemomechanics modeling of the behavior of concrete affected by the alkali-silica reaction and model-based assessment of degraded structures’, PhD Dissertation, Ecole Nationale des )onts et Chaussées, Paris, France [in French](2002).Google Scholar
  18. [18]
    Ulm, F.-J., Peterson, M. and Lemarchand, E., ‘Is ASR-Expansion caused by chemoporoplastic dilatation?’,Concrete Science and Engineering 4 (13) (2002) 47–55.Google Scholar
  19. [19]
    Ulm, F.-J., Torrenti, J.M. and Adenot, F., ‘Chemoporoplasticity of calcium leaching in concrete’,Journal of Engineering Mechanics, ASCE 125 (10) (1999) 1200–1211.CrossRefGoogle Scholar
  20. [20]
    Ulm, F.-J. and Coussy, O., ‘Mechanics and Durability of Solids. Vol. 1—Solid Mechanics’, (MIT-Prentice Hall Textbook Series in Civil, Environmental and Systems Engineering, Upper Saddle River, NJ, 2002).Google Scholar
  21. [21]
    Ulm, F.-J., Lemarchand, E. and Heukamp, F.H., ‘Elements of chemomechanics of Calcium leaching of cement-based materials at different scales’,Journal of Engineering Fracture Mechanics 70 (2003) 871–889.CrossRefGoogle Scholar
  22. [22]
    Constantinides, G. and Ulm F.-J., ‘The elastic properties of calcium-leached cement pastes and mortars: a multi-scale investigation’, MIT-CEE Report R02-01, MSc Dissertation, M.I.T.), Cambridge, MA, 2002.Google Scholar
  23. [23]
    Tennis, P.D. and Jennings, H.M., ‘A model for two types of calcium silicate hydrate in the microstructure of Portland cement paste’,Cement and Concrete Research 30 (6) (2000) 855–863.CrossRefGoogle Scholar
  24. [24]
    Jennings, H.M., ‘A model for the microstructure of calcium silicate hydrate in cement paste’,Cement and Concrete Research 30 (1) (2000) 101–116.CrossRefGoogle Scholar
  25. [25]
    Acker, P., ‘Micromechanical analysis of creep and shrinkage mechanisms’, in F.-J. Ulm, Z.P. Bažant and F.H. Wittmann (Eds.), ‘Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials’, Proc. of the Sixth International Conference CONCREEP-6@MIT, Elsevier, Oxford (UK), 2001 15–25.Google Scholar
  26. [26]
    Constantinides, G. and Ulm, F.-J., ‘The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling’,Cement and Concrete Research (in press).Google Scholar
  27. [27]
    Bažant, Z.P., ‘Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures’,Nuclear Engineering and Design 20 (1972) 477–505.CrossRefGoogle Scholar
  28. [28]
    Wittmann, F.H., ‘Creep and shrinkage mechanisms’, in Z.P. Bažant & F.H. Wittmann (Eds.), ‘Creep and shrinkage of concrete structures’, (J. Wiley and Sons, 1982) 129–161.Google Scholar
  29. [29]
    Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F., ‘Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker’Cement and Concrete Research 31 (4) (2001) 555–561.CrossRefGoogle Scholar
  30. [30]
    Constantinides, G., Ulm, F.-J., Van Vliet, K.J., ‘On the use of nanoindentation for cementitious materials’,Mater. Struct. (Special issue of Concrete Science and Engineering) 36 (257) (2003) 191–197.Google Scholar
  31. [31]
    Zaoui, A., ‘Continuum micromechanics—A survey’,Journal of Engineering Mechanics, ASCE 128 (8) (2002) 808–816.CrossRefGoogle Scholar
  32. [32]
    Mori, T. and Tanaka, K., ‘Average stress in matrix and average elastic energy of materials with misfitting inclusions’,Acta Metallurgica 21 (5) (1973) 1605–1609.CrossRefGoogle Scholar
  33. [33]
    Bernard, O., Ulm, F.-J. and Lemarchand, E., ‘A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials’,Cement and Concrete Research (2003) (in press).Google Scholar
  34. [34]
    Powers, T.C. and Brownyard, T.L., ‘Studies of the physical properties of hardened Portland cement paste’,Journal of the American Concrete Institute 18 (1946) 101–132.Google Scholar
  35. [35]
    Taylor, H.F.W., ‘Cement Chemistry,’ (Academic Press, New York, 1997).CrossRefGoogle Scholar
  36. [36]
    Adenot, F., ‘Durabilité du béton: caractérisation et modélisation des processus physique et chimiques de dégradation du ciment’, PhD Dissertation, Université d'Orléans, France, 1992.Google Scholar
  37. [37]
    Mainguy, M. and Coussy, O., ‘Propagation fronts during calcium leaching and chloride penetration’,Journal of Engineering Mechanics, ASCE 126 (3) (2000) 250–257.CrossRefGoogle Scholar
  38. [38]
    Heukamp, F.H. and Ulm, F.-J., ‘Chemomechanics of calcium leaching of cement-based materials at different scales: The role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures’, MIT-CEE Report R02-03 (PhD Dissertation, M.I.T.), Cambridge, MA, 2002.Google Scholar
  39. [39]
    Mainguy, M., Ulm, F.-J. and Heukamp, F.H., ‘Similarity properties of demineralization and degradation of cracked porous materials,’Int. Journal of Solids and Structures 38 (2001) 7079–7100.CrossRefGoogle Scholar
  40. [40]
    Garboczi, E.J., ‘Computational materials science of cementbased materials’,Mater. Struct. 26 (2) (1993) 191–195.CrossRefGoogle Scholar
  41. [41]
    Li, G.Q., Zhao, Y., Pang, S.S. and Li, Y.Q., ‘Effective Young's modulus estimation of concrete’,Cement and Concrete Research,29 (9) (1999) 1455–1462.CrossRefGoogle Scholar
  42. [42]
    Lemarchand, E., Ulm, F.-J. and Dormieux, L., ‘Effect of inclusions on friction coefficient of highly filled composite materials’,Journal of Engineering Mechanics, ASCE 128 (2002) (8) 876–884.CrossRefGoogle Scholar
  43. [43]
    Heukamp, F.H., Lemarchand, E. and Ulm, F.-J., ‘The effect of interfacial properties on the cohesion of highly filled composites’,Int. Journal of Solids and Structures (in press).Google Scholar
  44. [44]
    Suquet, P., ‘Effectives properties of nonlinear composites’, In: P. Suquet (Ed.), Continuum micromechanics, CISM 377, Springer-Verlag, Wien, 1997.CrossRefGoogle Scholar
  45. [45]
    Dormieux, L., Molinari, A. and Kondo, D., ‘Micromechanical approach to the behavior of poroelastic materials’,J. Mech. Phys. Solids,29 (2002) (8) 2203–2231.CrossRefGoogle Scholar
  46. [46]
    Barthélémy, J.F., Dormieux, L. and Lemarchand, E., ‘A micromechanical approach to the strength criterion of composite materials’ in N. Bicanic, R. de Borst, H. Mang and G. Meschke, Proc. Euro-C 2003, Computational Modelling of Concrete Structures, St. Johann im Pongau, Austria, March 2003, A.A. Balkema, Lisse, The Netherlands, 53–58, 2003.Google Scholar
  47. [47]
    Heukamp, F.H., Ulm, F.-J. and Germaine, J.T., ‘Mechanical properties of calcium leached cement pastes: Triaxial stress states and the influence of the pore pressure’,Cement and Concrete Research 31 (5) (2001) 767–774.CrossRefGoogle Scholar
  48. [48]
    Ulm, F.-J., Heukamp, F.H. and Germaine, J.T., ‘Residual design strength of cement-based materials for nuclear waste storage systems’, Nuclear Engineering and Design 211 (1) (2002) 51–60.CrossRefGoogle Scholar
  49. [49]
    Heukamp, F.H., Ulm, F.-J. and Germaine, J.T., ‘Poroplastic properties of calcium leached cement-based materials’,Cement and Concrete Research, In press. 2003.Google Scholar
  50. [50]
    Ulm, F.-J., Coussy, O., and Hellmich, Ch., ‘Chemoplasticity: a review of evidence’, in R. de Borst, N. Bicanic, H. Mang and G. Meschke, Proc. Euro-C'98, ‘Computational Modelling of Concrete Structures’, Bad Gastein, Austria, March/April 1998, A.A. Balkema, Rotterdam, 1998, 421–439.Google Scholar
  51. [51]
    Ulm, F.-J., Heukamp, F.H. and Constantinides, G., ‘Is concrete a poromechanics material?—A multiscale investigation of poroelastic properties’,Mater. Struct., Special issue of Concrete Science and Engineering (2003) (in review).Google Scholar
  52. [52]
    Schneider, U. and Chen, S.-W., ‘The chemomechanical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion’,Cement and Concrete Research 28 (4) (1998) 509–522.CrossRefGoogle Scholar
  53. [53]
    Silva, E.C. and Ulm, F.-J., ‘A bio-chemo-mechanics approach to bone remodeling and fracture’, in B.L. Karihaloo (Ed.) Proc. IUTAM Symposium, Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, Cardiff June 2001, Kluwer Academic Publishers, Dordrecht-Boston-London (2002) 355–366.MATHGoogle Scholar

Copyright information

© RILEM 2003

Authors and Affiliations

  • F. -J. Ulm
    • 1
  1. 1.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations