Skip to main content
Log in

On estimation of a density and its derivatives

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

Letf (p)n be a recursive kernel estimate off (p) thepth order derivative of the probability density functionf, based on a random sample of sizen. In this paper, we provide bounds for the moments of\(\left\| {f_n^{(p)} - f^{(p)} } \right\|_{L_2 } = \left[ {\smallint [f_n^{(p)} (x) - f^{(p)} (x)]^2 dx} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \) and show that the rate of almost sure convergence of\(\left\| {f_n^{(p)} - f^{(p)} } \right\|_{L_2 } \) to zero isO(n −α), α<(r−p)/(2r+1), iff (r),r>p≧0, is a continuousL 2(−∞, ∞) function. Similar rate-factor is also obtained for the almost sure convergence of\(\left\| {f_n^{(p)} - f^{(p)} } \right\|_\infty = \mathop {\sup }\limits_x \left| {f_n^{(p)} (x) - f^{(p)} (x)} \right|\) to zero under different conditions onf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, P. K. (1967). Estimation of a probability density function and its derivatives,Sankhyá, A,29, 373–382.

    MathSciNet  MATH  Google Scholar 

  2. Carroll, R. J. (1976). On sequential density estimation,Z. Wahrscheinlichkeitsth.,36, 137–151.

    Article  MathSciNet  Google Scholar 

  3. Davies, H. I. (1973). Strong consistency of a sequential estimator of a probability density function,Bull. Math. Statist.,15, 49–54.

    MathSciNet  MATH  Google Scholar 

  4. Davies, H. I. and Wegman, E. J. (1975). Sequential nonparametric density estimation,IEEE Trans. Inf. Theory, IT-21, 619–628.

    Article  MathSciNet  Google Scholar 

  5. Deheuvals, P. (1974). Conditions necessaires et suffisantes de convergence ponctuelle presque sûre et uniforme presque sûre des estimateurs de la densité,C. R. Acad. Sci. Paris, A.278, 1217–1220.

    MathSciNet  MATH  Google Scholar 

  6. Fryer, M. J. (1977). A review of some non-parametric methods of density estimation,J. Inst. Math. Appl.,20, 335–354.

    Article  MathSciNet  Google Scholar 

  7. Lamperti, J. (1966).Probability, W. A. Benjamin, Inc. N.Y.

    MATH  Google Scholar 

  8. Lin, P. E. (1975). Rates of convergence in empirical Bayes problems: Continuous case,Ann. Statist.,3, 155–164.

    Article  MathSciNet  Google Scholar 

  9. Nadaraya, E. A. (1965). On nonparametric estimates of density functions and regression curves,Theory Prob. Appl.,10, 186–190.

    Article  Google Scholar 

  10. Nadaraya, E. A. (1973). On convergence in theL 2-norm of probability density estimates,Theory Prob. Appl.,18, 808–811.

    Article  Google Scholar 

  11. Parzen, E. (1962). On estimation of a probability density function and mode,Ann. Math. Statist.,33, 1065–1076.

    Article  MathSciNet  Google Scholar 

  12. Silverman, B. S. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its derivatives,Ann. Statist.,6, 177–184.

    Article  MathSciNet  Google Scholar 

  13. Singh, R. S. (1977a). Improvement on some known nonparametric uniformly consistent estimators of derivatives of a density,Ann. Statist.,5, 394–400.

    Article  MathSciNet  Google Scholar 

  14. Singh, R. S. (1977b). Applications of estimators of a density and its derivatives to certain statistical problems,J.R. Statist. Soc., B,39, 357–363.

    MathSciNet  MATH  Google Scholar 

  15. Singh, R. S. (1979). On necessary and sufficient conditions for uniform strong consistency of estimators of a density and its derivatives,J. Multivariate Anal.,9, 157–164.

    Article  MathSciNet  Google Scholar 

  16. Singh, R. S. (1981). On the exact asymptotic behavior of estimators of a density and its derivatives,Ann. Statist.,9, 453–456.

    Article  MathSciNet  Google Scholar 

  17. Walter, G. G. (1977). Properties of Hermite series estimation of probability density,Ann. Statist.,5, 1258–1264.

    Article  MathSciNet  Google Scholar 

  18. Walter, G. G. (1980). Addendum to “Properties of Hermite series estimation of probability density”,Ann. Statist.,8, 454–455.

    Article  MathSciNet  Google Scholar 

  19. Wegman, E. J. (1972a). Nonparametric probability density estimation: I. A. summary of available methods,Technometrics,14, 533–546.

    Article  Google Scholar 

  20. Wegman, E. J. (1972b). Nonparametric probability density estimation: II. A comparison of density estimation methods,J. Statist. Comp. Simul.,1, 225–245.

    Article  Google Scholar 

  21. Wegman, E. J. and Davies, H. I. (1979). Remarks on some recursive estimators of a probability density,Ann. Statist.,7, 316–327.

    Article  MathSciNet  Google Scholar 

  22. Wolverton, C. T. and Wagner, T. J. (1969). Asymptotically optimal discriminant functions for pattern classification,IEEE Trans. Inf. Theory, IT-15, 258–265.

    Article  MathSciNet  Google Scholar 

  23. Yamato, H. (1971). Sequential estimation of a continuous probability density and mode,Bull. Math. Statist.,14, 1–12.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Research Foundation of SUNY.

About this article

Cite this article

Cheng, K.F. On estimation of a density and its derivatives. Ann Inst Stat Math 34, 479–489 (1982). https://doi.org/10.1007/BF02481046

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481046

AMS 1970 subject classification

Key words and phrases

Navigation