Skip to main content
Log in

Schrödinger dynamics and physical folia of infinite mean-field quantum systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work deals with the general (i.e. non-equilibrium) Schrödinger dynamics of infinite mean-field quantum systems. It is shown how this dynamics is related to the Hamiltonian flowϕ Q t on the “classical phase-space”\(E \subseteqq \mathbb{R}^L \) recently defined by Bona [10] to describe the time evolution of classical (macroscopic) observables of the system. These connections allow us to clarify the structure of the set of all physical folia, a notion introduced by Sewell for the dynamical description of infinite systems in cases where this description is representation-dependent. They also yield a result showing that the Heisenberg picture is the more general approach to such descriptions in the sense that there are more representations in which a Heisenberg dynamics can be defined than ones which allow for the definition of a Schrödinger dynamics. Finally, our theory makes it possible to construct many explicit examples of physical folia; in this connection it is shown that there can be overcountably many inequivalent representations with the same macroscopic dynamical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepp, K., Lieb, E. H.: Helv. Phys. Acta46, 573 (1973). In: Batelle Rencontres1974. Moser, J. K. (ed.) Berlin, Heidelberg, New York: Springer 1975; Hepp, K.: Ann. Phys. (NY)90, 285 (1975)

    Google Scholar 

  2. Dubin, D. A., Sewell, G. L.: J. Math. Phys.,11, 2990 (1970); Emch, G. G., Knops, H. J. F.: J. Math. Phys.11, 3008 (1970); Jellinek, F.: Commun. Math. Phys.9, 169 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sewell, G. L.: Commun. Math. Phys.33, 43 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. It is not possible to cite all relevant works; as examples for early treatments, we mention refs. 2; later works include van Hemmen, L.: Fortschritte Phys.26, 397 (1978); Roos, H.: Physica100A, 183 (1980); Duffner, E.: Physica133A, 187 (1985)

    Google Scholar 

  5. Haag, R., Kadison, R. V., Kastler, D.: Commun. Math. Phys.16, 81 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Sewell, G. L.: Lett. Math. Phys.6, 209 (1983)

    MathSciNet  Google Scholar 

  7. Morchio, G., Strocchi, F.: J. Math. Phys.28, 622 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Rieckers, A.: J. Math. Phys.25, 2593 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  9. Primas, H.: Chemistry, quantum mechanics and reductionism. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  10. Bona, P.: J. Math. Phys.29, 2223 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bona, P.: J. Math. Phys.30, 2994 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Unnerstall, T.: to appear in J. Math. Phys.31 (1990)

  13. Duffner, E., Rieckers, A.: Z. Naturforschung43, 321 (1988)

    MathSciNet  Google Scholar 

  14. Kadison, R. V.: Topology3, [Suppl. 2] 177 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Unnerstall, T.: to appear in the Proceedings of the Conference; Selected Topics in QFT and Mathematical Physics. Liblice June 1989, Singapore: World Scientific,

    Google Scholar 

  16. Spohn, H.: Rev. Mod. Phys.53, 569 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  17. Bratteli, O., Robinson, D. W.: Operator algebras and statistical mechanicsI, II. Berlin, Heidelberg, New York: Springer 1979, 1981

    Google Scholar 

  18. Takesaki, M.: Theory of operator algebras I. Berlin, Heidelberg, New York: Springer 1979

    MATH  Google Scholar 

  19. Størmer, E.: J. Funct. Anal.3, 48 (1969)

    Article  MATH  Google Scholar 

  20. Fannes, M., Spohn, H., Verbeure, A. J. Math. Phys.21, 355 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Thirring, W., Wehrl, A.: Commun. Math. Phys.4, 303 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Fleig, W.: Acta Phys. Austr.55, 135 (1983)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Fröhlich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unnerstall, T. Schrödinger dynamics and physical folia of infinite mean-field quantum systems. Commun.Math. Phys. 130, 237–255 (1990). https://doi.org/10.1007/BF02473352

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473352

Keywords

Navigation