Applied Mathematics and Mechanics

, Volume 9, Issue 7, pp 667–679 | Cite as

Investigation of the stability for inviscid compressible swirling flow between concentric cylinders

  • Xia Nan
  • Yin Xie-yuan


The temporal stability on inviscid compressible swirling flow between two concentric cylinders is investigated. First, a linearized differential equation is derived. Two stability criteria are derived for compressible swirling flow by an analytic method analogous to Ludwieg’s method. A finite-difference numerical method is then used to solve the eigenvalue problem of this differential equation, to get temporal growth rate and to check these stability criteria derived. Finally, The effect of compressibility for stability is disscused.


Stability Criterion Incompressible Flow Compressible Flow Swirling Flow Neutral Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rayleigh, L., On the dynamics of revolving fluids.Proc. Roy. Soc. London,A 93, S.148–154. (1916).Google Scholar
  2. [2]
    Howard, L.N. and A.S. Gupta, On the hydrodynamic and hydromagnetic stability of Swirling flow.J. Fluid Mech.,14 (1962), 463–476.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Ludwieg, H., Stabilitat der Sromung in einem Zylindrischen Ringraum.ZFW., 8 (1960), 135–140.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Ludwieg, H., Erganzung zu der Arbeit “Stabilitat der Stromung in einem Zylindrischen Ringraum”,ZFW.,9 (1961), 359–361.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Ludwieg, H., Experimentalle Nachprufung der Stabilitatstheorien fur reibungsfreie Stromungen mit Schraubenlinienformigen Stromlinien,ZFW, 12, (1964), 304–309.Google Scholar
  6. [6]
    Schlichting, H.,Boundary Layer Theory, 6th ed., New York, McGraw-Hill (1968).Google Scholar
  7. [7]
    Leibovich, S. and K. Stewartson, A sufficient condition for instability of columnar vortices.J. Fluid Mech.,126 (1983), 335–356.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Howard, L.N., On the stability of compressible swirling flow,Studies in Applied Mathematics,52, 1 (1973), 39–43.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Lalas, D.P., The Richardson criterion for compressible swirling flow,J. Fluid Mech.,69 (1975), 65–72.zbMATHCrossRefGoogle Scholar
  10. [10]
    Duck, P.W. and M.R. Foster, The inviscid stability of a trailing line vortex.ZAM P. 31 (1980), 524–532.zbMATHCrossRefGoogle Scholar

Copyright information

© SUT 1988

Authors and Affiliations

  • Xia Nan
    • 1
  • Yin Xie-yuan
    • 1
  1. 1.Department of Modern MechanicsUniversity of Science and TechnologyHefei

Personalised recommendations