Advertisement

Applied Mathematics and Mechanics

, Volume 20, Issue 10, pp 1087–1098 | Cite as

On a class of generalized nonlinear implicit quasivariational inclusions

  • Ding Xieping
Article

Abstract

In this paper, a new class of generalized nonlinear implicit quasivariational inclusions involving a set-valued maximal monotone mapping are studied. A existence theorem of solutions for this class of generalized nonlinear implicit quasivariational inclusions is proved without compactness assumptions. A new iterative algorithm for finding approximate solutions of the generalized nonlinear implicit quasivariational inclusions is suggested and analysed and the convergence of, iterative sequence generated by the new algorithm is also given. As special cases, some known results in this field are also discussed.

Key words

generalized nonlinear implicit quasivariational inclusion maximal monotone mapping iterative algorithm Hilbert space 

CLC number

O177.91 O177.92 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bensoussan A, Gourst M, Lions J I. Control impulsinel et inequations quasivariationrlles stationaries[J].C R Acad Sci. Paris, 1973,276, 1279–1284.zbMATHGoogle Scholar
  2. [2]
    Bensoussan A, Lions J I. Impulse control and quasivariational inequalities Bordas, Paris: Gauthiers-Villes, 1984.Google Scholar
  3. [3]
    Baiocchi C, Capelo A.Variational and Quasivariational Inequalities, Applications to Free Boundary Problems[M]. New York: Wiley, 1984.Google Scholar
  4. [4]
    Mosco U. Implicit variational problems and quasivariational inequalities[J].Lecture Notes in Math, Berlin: Springer-Verlag, 1976,543: 83–156.Google Scholar
  5. [5]
    Isac G. Fixed point theory, coincidence equations on convex cones and complementarity problems[J].Contemp Math, 1988,72: 139–155.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Isac G. A special variational inequality and implicit complementarity problem[J].J Fac Sci Univ Tokyo Sect IA Math, 1990,37(1): 109–127.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Noor M A. An iterative scheme for a class of quasivariational inequalities[J].J Math Anal Appl, 1985,110: 462–468.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Noor M A. Quasi variational inequalities[J].Appl Math Lett, 1988,1(4): 367–370.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Noor M A. An iterative algorithm for variational inequalities[J].J Math Anal Appl, 1991,158(2): 448–455.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Noor M A. General algorithm and sensitivity analysis for variational inequalities[J].J Appl Math Stoch Anal, 1992,5(1): 29–42.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Pang J S. The implicit complementarity problem[A]. In: Mangasarian, Mayer, Robinson Eds.Nonlinear Programming 4[C]. New York: Acad Press, 1981, 487–518.Google Scholar
  12. [12]
    Pang J S. On the convergence of a basic iterative method for the implicit complementarity problems[J].J Optim Theory Appl, 1982,37(1): 149–162.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Siddiqi A H, Ansari Q H. Strongly nonlinear quasivariational inequalities[J].J Math Anal Appl, 1990,149(2): 444–450.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Siddiqi A H, Ansari Q H. General strongly nonlinear variational inequalities[J].J Math Anal Appl, 1992,166(2): 386–392.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Ding X P, Tarafdar E. Generalized nonlinear variational inequalities with nonmonotone set-valued mappings[J].Appl Math Lett, 1994,7(4): 5–11.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Ding X P, Tarafdar E. On, existence and uniqueness of solutions, for a genral nonlinear variational inequality[J].Appl Math Lett, 1995,8(1): 31–36.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Gao J S, Yao J C. Extension of strongly nonlinear quasivariational inequalities[J].Appl Math Lett, 1992,5(3): 35–38.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Zeng L. Iterative algorithm for finding approximate solutions for general strongly nonlinear variational inequalities[J].J Math Anal Appl, 1994,187(2): 352–360.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J].Math Programming, 1990,48(1): 161–220.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    Noor M A, Noor K I, Rassias T M. Some aspects of variational inequalities[J].J Comput Appl Math, 1993,47(1): 285–312.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Saigal R. Extension of the generalized complementarity problem[J].Math Oper Res, 1976,1(3): 260–266.zbMATHMathSciNetGoogle Scholar
  22. [22]
    Fang S C. An iterative method for generalized complementarity problems[J].IEEE Trans Automat Control, 1980,25: 1225–1227.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Fang S C, Peterson E L. Generalized variational inequalities[J].J Optim Theory Appl, 1982,38(2): 363–383.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Chan D, Pang J S. The generalized quasivariational inequality[J].Math Oper Res, 1982,7(1): 211–222.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Siddiqi A H, Ansari Q H. An iterative method for generalized variational inequalities[J].Math Japan, 1990,34(3): 475–481.MathSciNetGoogle Scholar
  26. [26]
    Ding Xieping. Generalized strongly nonlinear quasivariational inequalities[J].J Math Anal Appl, 1993,173(2): 577–587.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Ding Xieping. A new class of generalized strongly nonlinear quasivariational inequalities and quasi-complementarity problems[J].Indian J Pure Appl Math, 1994,25(11) 1115–1128.MathSciNetGoogle Scholar
  28. [28]
    Ding Xieping. Set-valued implicit Wiener-Hopf equations and generalized strongly nonlinear quasivariational inequalities[J].J Appl Anal, 1998,4(1): 59–71.Google Scholar
  29. [29]
    Ding X P, Tarafdar E. Monotone generalized variational inequalities and generalized complementarity problems[J]J Optim Theory Appl, 1996,88(1): 107–122.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    Zeng L. Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasivariational inequalities[J].J Math Anal Appl, 1996,201(1): 180–194.zbMATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    Hassouni A, Moudafi A. A perturbed algorithm for variational inclusions[J].J Math Anal Appl, 1994,185(3): 706–712.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Adly S. Pertubed algorithms and sensitivity analysis for a general class of variational inclusions[J].J Math Anal Appl, 1996,201(2): 609–630.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    Huang N J. Generalized nonlinear variational inclusions with noncompact valued mapping [J].Appl Math Lett, 1996,9(3): 25–29.zbMATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Kazmi K R. Mann and Ishikawa perturbed iterative algorithms for generalized quasivariational inclusions[J].J Math Anal Appl, 1997,209(2): 572–583.zbMATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    Ding Xieping. Perturbed proximal point algorithm for generalized quasivariational inclusions[J].J Math Anal Appl, 1997,210(1): 88–101.MathSciNetCrossRefGoogle Scholar
  36. [36]
    Ding Xieping. Proximal point algorithm with errors for generalized, strongly nonlinear quasivariational inclusions [J].Applied mathematics and Mechanics (English Edition), 1998,19(7): 647–643.CrossRefGoogle Scholar
  37. [37]
    Pascali D, Shurlan S.Nonlinear Mappings of Monotone Type[M]. Romaina: Sijthoff & Noordhoff Inter Pub, 1978.Google Scholar
  38. [38]
    Huang N J. On the generalized implicit quasivaritational inequalities[J].J Math Anal Appl, 1997,216(1): 197–210.zbMATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    Noor M A. Generalized multivalued quasivarariational inequalities[J].Comput Math Appl, 1996,31(12) 1–13.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    Nadler S B, Jr. Multi-valued contraction mappings[J].Pacific J Math,1969,30(2): 475–488.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1999

Authors and Affiliations

  • Ding Xieping
    • 1
  1. 1.Department of MatheamticsSichuan Normal UniversityChengduP R China

Personalised recommendations