Skip to main content
Log in

An exact solution of crack problems in piezoelectric materials

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from the available experiments that the above assumption will lead to erroneous results. In this paper, the two-dimensional problem of a piezoelectric material with a crack is studied based on the exact electric boundary condition on the crack faces. Stroh formalism is used to obtain the closed-form solutions when the material is subjected to uniform loads at infinity. It is shown from these solutions that: (i) the stress intensity factor is the same as that of isotropic material, while the intensity factor of the electric displacement depends on both material properties and the mechanical loads, but not on the electric load. (ii) the energy release rate in a piezoelectric material is larger than that in a pure elastic-anisotropic material, i. e., it is always positive, and independent of the electric loads. (iii) the field solutions in a piezoelectric material are not related to the dielectric constant of air or vacuum inside the crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parton V Z. Fracture mechanics of piezoelectric materials [J].Acta Astronautic, 1976,3 (9): 671–683

    Article  MATH  Google Scholar 

  2. Pak Y E. Crack extension force in a piezoelectric material [J].ASME J Appl Mech, 1990,57 (3): 647–653

    Article  MATH  Google Scholar 

  3. Suo Z, Kuo C M, Barnett D M, Willis J R. Fracture mechanics for piezoelectric ceramics [J].J Mech Phys Solids, 1992,40 (4): 739–765

    Article  MATH  MathSciNet  Google Scholar 

  4. Sosa H A. On the fracture mechanics of piezoelectric solids [J].Int J Solids Structures, 1992,29 (21): 2613–2622

    Article  MATH  Google Scholar 

  5. Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials [J].Int J Fracture, 1992,54 (1): 79–100

    Google Scholar 

  6. Pak Y E, Tobin A. On electric field effects in fracture of piezoelectric materials [J]. AMD-Vol, 161/MD-Vol. 42,Mechanics of Electromagnetic Materials and Structure, ASME, 1993, 51–62

  7. Sosa H A. Crack problems in piezoelectric ceramics [J]. AMD-Vol. 161/MD-Vol. 42,Mechanics of Electromagnetic Materials and Structure, ASME, 1993, 63–75

  8. Dunn M L. The effect of crack face boundary conditions on the fracture mechanics of piezoelectric solids [J].Eng Fracture Mech, 1994,48 (1): 25–39

    Article  Google Scholar 

  9. Park S B, Sun C T. Effect of electric field on fracture of piezoelectric ceramic [J].Int J Fracture, 1995,70 (3): 203–216

    Article  Google Scholar 

  10. Beom H G, Atluri S N. Near-tip fields and intensity factors for interfacial cracks in disimilar anisotropic piezoelectric media [J].Int J Fracture, 199675 (2): 163–183

    Article  Google Scholar 

  11. Zhang T Y, Tong P. Fracture mechanics for a mode III crack in a piezoelectric material [J].Int J Solids Structures, 1996,33 (3): 343–359

    Article  MATH  MathSciNet  Google Scholar 

  12. Kogan L, Hui C Y, Molkov V. Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material [J].Int J solids Structures, 1996,33 (19): 2719–2737

    Article  MATH  Google Scholar 

  13. Yu S W, Qin Q H. Damage analysis of thermopiezoelectric properties: Part I—Crack tip singularities [J].Theor Appl Fract Mech, 1996,25 (3): 263–277

    Article  Google Scholar 

  14. Qin Q H, Yu S W. An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials [J].Int J Solids Structures, 1997,34 (5): 581–590

    Article  MATH  Google Scholar 

  15. Du Shanyi, Liang Jun, Han Jiecal. The coupled solution of a rigid line inclusion and a crack in anisotropic piezoelectric solids [J].Acta Mechanica Sinica, 1995,27 (5): 544–550 (in Chinese)

    Google Scholar 

  16. Yang Xiaoxiang, Kuang Zhenbang. The calculation of piezoelectric materials with a mixed mode crack [J],Acta Mechanicia Sinica, 1997,29 (3): 314–322 (in Chinese)

    Google Scholar 

  17. Sosa H A, Khutoryansky N. New developments concerning piezoelectric materials with defects [J].Int J Solids Structures, 1996,33 (23): 3399–3414

    Article  MATH  MathSciNet  Google Scholar 

  18. Chung M Y, Ting T C T. Piezoelectric solids with an elliptic inclusion or hole [J].Int J Solids Structures, 1996,33 (23): 3343–3361

    Article  MATH  MathSciNet  Google Scholar 

  19. Suo Z. Singularities. Interfaces and cracks in dissimilar anisotropic media [J].Proc R Soc Lond, 1990, A427: 331–358

    Article  MATH  MathSciNet  Google Scholar 

  20. Lothe J. Integral formalism for surface waves in piezoelectric crystals: Existence considerations [J].J Appl Phys, 1976,47 (5): 1799–1807

    Article  Google Scholar 

  21. Muskhelishvili N I.Some Basic Problems of Mathematical Theory of Elasticity [M]. Leyden: Noordhoof, 1975

    Google Scholar 

  22. Wangsness R K.Electromagnetic Fields [M]. New York: John Wiley & Sons, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunfa, G., Weixun, F. An exact solution of crack problems in piezoelectric materials. Appl Math Mech 20, 51–58 (1999). https://doi.org/10.1007/BF02459273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459273

Key words

Navigation