Applied Mathematics and Mechanics

, Volume 16, Issue 7, pp 675–682 | Cite as

Parallel Multisplitting AOR method for solving a class of system of nonlinear algebraic equations

  • Bai Zhongzhi


A class of parallel, multisplitting accelerated overrelaxation (AOR) method is set up for solving large-scale system of nonlinear algebraic equations Aϕ(x)+Bψ(x)=b. Under certain conditions, we prove the existence and uniqueness of the solution of this system of nonlinear equations and set up the global convergence theory of the new method.

Key words

system of nonlinear algebraic equations parallel method relaxation H-matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. P. O'Leary and R. E. White, Multisplittings of matrices and parallel solution of linear systems,SIAM J. Alg. Disc. Meth.,6 (1985), 630–640.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. E. White, A nonlinear parallel algorithm with application to the Stefan problem,SIAM J. Numer. Anal.,23 (1986), 639–652.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Bai Zhongzhi, Parallel nonlinear AOR method and its convergence (1994).Google Scholar
  4. [4]
    R. E. White, Paralled algorithms for nonlinear problems,SIAM J. Alg. Disc. Meth.,7 (1986), 137–149.zbMATHGoogle Scholar
  5. [5]
    R. E. White, An enthalpy formulation of the Stefan problem,SIAM J. Numer. Anal.,19 (1982), 1129–1157.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. E. White, The binary alloy solidfication problem: existence, uniqueness and numerical approximation,SIAM J. Numer. Anal.,22 (1985), 205–244.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. M. Ortega and W. C. Rheinboldt,Iterative Solutions of Nonlinear Equation in Several Variables, Academic Press, New York (1970).Google Scholar

Copyright information

© Shanghai University of Technology (SUT) 1995

Authors and Affiliations

  • Bai Zhongzhi
    • 1
  1. 1.Institute of MathematicsFudan UniversityShanghaiP. R. China

Personalised recommendations