Applied Mathematics and Mechanics

, Volume 16, Issue 7, pp 623–633 | Cite as

A general topological version of minimax theorem

  • Zhang Shisheng
  • Zhang Xian


A more general topological version of minimax theorem including the main results in König [3] as its special cases are given, and an open question suggested in König [3] is answered.

Key words

minimax theorem connected subset 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Kindler, On a minimax theorem of Terkelsen's,Arch. Math.,55 (1990), 573–583.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Kindler and R. Trost, Minimax theorems for interval spaces,Acta Math. Hung.,54 (1989), 39–49.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. König, A general minimax theorems based on connectedness,Arch. Math.,59 (1992), 55–64.zbMATHCrossRefGoogle Scholar
  4. [4]
    B. Ricceri, Some topological minimax theorems via an alternative principle for multifunctions,Arch. Math.,60 (1993), 367–377.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Simons, On Terkelsen's minimax theorem,Bull. Inst. Math. Acad. Sin.,18 (1990), 35–39.zbMATHMathSciNetGoogle Scholar
  6. [6]
    S. Simons, An upward-downward minimax theorem,Arch. Math.,55, (1990), 275–279.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Sion, On general minimax theorem,Pacific J. Math.,8 (1958), 171–176.zbMATHMathSciNetGoogle Scholar
  8. [8]
    H. Tuy, On a general minimax theorem,Soviet Math. Dokl.,15 (1974), 1689–1693.zbMATHGoogle Scholar
  9. [9]
    Wu Wentsun, A remark ón the fundamental theorem in the theory of games,Sci. Rec. (N.S.)3 (1959), 229–233.Google Scholar

Copyright information

© Shanghai University of Technology (SUT) 1995

Authors and Affiliations

  • Zhang Shisheng
    • 1
  • Zhang Xian
    • 2
  1. 1.Department of MathematicsSichuan UniversityChengduP. R. China
  2. 2.Department of MathematicsAnhui Normal UniversityAnheiP. R. China

Personalised recommendations