Applied Mathematics and Mechanics

, Volume 15, Issue 8, pp 755–765 | Cite as

Integral invariants of a holonomic dynamical ststem

  • Naseer Ahmed


This paper uses Poincaré's formalism to study the integral invariants of a conservative holonomic dynamical system. Introducing new parameters for the asynchronous variation, a generalization of the Poincaré and Poincaré-Cartan integral invariants is presented.

Key words

analysis mechanics holonomic dynamical system integral invariants synchronous asynchronous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahmed, N. Some problems in the dynamics of nonholonomic systems, Ph. D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan (1986).Google Scholar
  2. [2]
    Arnold, V. I.,Mathematical Methods of Classical Mechanics, Springer-Verlag, New York Inc. (1978).Google Scholar
  3. [3]
    Benavent, R., Poincaré-Cartan integral invariant for constrained system,Ann. Phys.,118, 2 (1979), 476–489.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Cetaev, N. G., On the equations of Poincaré,Prikl. Mat. Meh.,5 (1941), 253–262.Google Scholar
  5. [5]
    Djukić, Dj. S., Integral invariants in classical nonconservative mechanics,Acta Mechanica,23, 3 (1975), 291–296.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Dobronravove, V. V., Integral-invariants of the analytical mechanics in nonholonomic coordinates,Dokl. Akad. Nauk. SSSR,XLVI (1945), 196–199.Google Scholar
  7. [7]
    Duan, L. and L. Young, About basic integral variants of holonomic nonconservative dynamical systems.Acta Mechanica Sinica,7, 2 (1991), 178–185.Google Scholar
  8. [8]
    Gantmacher, F. R.,Lectures in Analytical Mechanics, Mir Publishers, Moscow (1970).Google Scholar
  9. [9]
    Ghori, Q. K. and M. Hussain, Generalization of Hamilton-Jacobi theorem.Z. Angew. Math. Phys.,25, (1974), 536–540.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Ghori, Q. K. and N. Ahmed, Hamilton's principle for nonholonomic systems,Z. Angew. Math. Mech.,74, 2 (1994), 137–140.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Pars, L. A.,A Treatise on Analytical Dynamics, Heinemann London (1968).Google Scholar
  12. [12]
    Poineré, H., Sur nue forme nouvelle des équations de la mécanique,C. R. Acad. Sci., Paris,132 (1901), 369–371.Google Scholar
  13. [13]
    Vujanovic, B., Conservation laws of dynamical systems via d'Alember's principle.Int. J. Non-Linear Mech.,13 (1978), 185–197.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Whittaker, E. T.,A Treatise on Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press (1927).Google Scholar

Copyright information

© SUT 1994

Authors and Affiliations

  • Naseer Ahmed
    • 1
  1. 1.Mathematics DepartmentQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations