Skip to main content
Log in

A theory of classical spacetime (I)—foundations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Despite its beauty and grandeur the theory of GR still appears to be incomplete in the following ways:

  1. (1)

    It cannot accommodate the asymmetric total energy momentum tensor whose asymmetry has been shown to exist in the presence of electromagnetism.

  2. (2)

    The law of angular momentum balance as an exact equation is not an automatic consequence of the field equations as is the case with the law of linear momentum balance.

  3. (3)

    The four degrees of arbitrariness left by the contracted second Bianchi identity makes a unique solution of the field equations unattainable without extra (unphysical) postulates.

To answer the challenge posed by the above assertions we propose in this paper to complete Einstein's theory by postulating the principle fibre bundle P[M,SU(2)] for the underlying geometry of the 4-dimensional spacetime, where the structure group SU (2) is the real representation of the special complex unitary group of dimension 2; SU (2) leaves concurrently invariant the metric form dS2=gα βdxαdxβ and the fundamental 2-form ϕ=(1/21)aαβdxαΛdxβ defined globally on M. The Einstein equation defined in terms of the SU(2)-connection is imposed on the spacetime manifold together with the Maxweil inhomogeneous equation as the supplementary condition where the electromagnetic tensor is identified with a contracted form of the curvature tensor. The result is a set of 16 functionally independent equations to the 16 unknown field variables (gαβ aαβ. Moreover, the law of angular momentum balance is just/the skew-symmetric part of the generalized Einstein equation where the spin angular momentum tensor is shown directly proportional to the torsion tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winicour, J., inGeneral Relativity and Gravitation, A. Held and P. Bergman, eds., Vol.2, Plenum, N.Y. (1980).

    Google Scholar 

  2. Cartan, E., ComptusRendus,174 (1922), 593;Ann. Ec. Norm.,40 (1923), 325.

    MATH  Google Scholar 

  3. Trautman, A.,Bull. Acad. Polon. Sci.,20 (1972), 185, 503.

    MathSciNet  Google Scholar 

  4. Henl, F.W., et al.,Rev. Mod. Phys.,18 (1976), 393.

    Google Scholar 

  5. Bleeker, D.,Gauge Theory and Variational Principles, Addison-Wesley, Mass. (1981).

    Google Scholar 

  6. Sternberg, S.,Lectures in Differential Geometry, Prentice-Hall, N.J. (1963).

    Google Scholar 

  7. Kobayashi, S.,Transformation Groups in Differential Geometry, Springer-Verlag, Berlin (1972).

    MATH  Google Scholar 

  8. Hermann, R.,Quantum and Fermion Differential Geometry, Part A, Math. Sci. Press. Brookline, Mass. (1977).

    Google Scholar 

  9. Kobayashi, S. and K. Nomizu,Foundations of Differential Geometry, Vol.1, Interscience, N.Y. (1963).

    MATH  Google Scholar 

  10. Misner, C.W., et al.,Gravitation, W.H. Freeman, San Francisco (1973).

    Google Scholar 

  11. Stephani, H.,General Relativity, Cambridge Univ. Press, Cambridge (1982).

    MATH  Google Scholar 

  12. Hermann, R.,Gauge Fields and Cartan-Ehresmann Connections Part A, Math. Sci. Press, Brookline, Mass. (1975).

    MATH  Google Scholar 

  13. Frankel, T.,Gravitational Curvature, W.H. Freeman, San Francisco (1979).

    MATH  Google Scholar 

  14. Schouten, J.A.,Ricci Calculus, Springer-Verlag, Berlin, (1954).

    MATH  Google Scholar 

  15. De Groot, S.R., et al.,Foundations of Electrodynamics, North-Holland, Amsterdam (1972).

    Google Scholar 

  16. Heyde, P. von der et al.,Proc. 1st Marcel Grosmann Meeting on G.R., North-Holland, Amsterdam (1977), 255.

    Google Scholar 

  17. Fock, V.,The Theory of Space, Time and Gravitation, Pergamon, Oxford (1964).

    Google Scholar 

  18. Weinberg, S.,Gravitation and Cosmology, John Wiley, N.Y. (1972).

    Google Scholar 

  19. Prassanna, A.R.,Phys. Lett. 54A (1975), 17.

    Google Scholar 

  20. Hawking, S., et al.,The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge (1973).

    Google Scholar 

  21. Stratton, J.A.,Electromagnetic Theory, McGraw-Hill, N.Y. (1941).

    MATH  Google Scholar 

  22. Einstein, A., in P.A. Schilpp,Albert-Einstein-Philosopher-Scientist, Library of Living Philosophers (1949).

  23. Einstein, A.,The Meaning of Relativity, 6th ed., Princeton Univ. Press (1956)

  24. Buchdanl, H.A.,Proc. Camb. Phil. Soc.,56 (1960), 396.

    Article  Google Scholar 

  25. Atkinson, R.d'E,Astro. J.,70 (1965), 513.

    Article  Google Scholar 

  26. Atkinson, R.d'E,Proc. Roy. Soc. (Lond.), Series A,272 (1962), 60.

    Google Scholar 

  27. Finlayson, B.A.,Phys. Eluids,15 (1972), 963.

    Article  MATH  MathSciNet  Google Scholar 

  28. Atnerton, R.W. and G.M. Homsy,Stud. Appl. Math.,54 (1975), 31.

    Google Scholar 

  29. Sachs, M.,General Relativity and Matter, D. Beidel, Dordrecht, Holland (1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y. A theory of classical spacetime (I)—foundations. Appl Math Mech 8, 1115–1131 (1987). https://doi.org/10.1007/BF02450907

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450907

Keywords

Navigation