Skip to main content
Log in

Form invariance and noether symmetrical conserved quantity of relativistic Birkhoffian systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff-Birkhoff-D' Alembert principle under the infinitesimal transformation of groups, the theory of Noethe, symmetries of the relativistic Birkhoffian system were constructed. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birkhoffian system under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff G D.Dynamical System[M]. New York: AMS College Publ, Providence, RI, 1927.

    Google Scholar 

  2. Santilli R M.Foundations of Theoretical Mechanics II [M]. New York: Springer-Verlag, 1983, 110–280.

    Google Scholar 

  3. MEI Feng-xiang. Noether theory of Birkhoffian system[J].Science in China, Series A, 1993,36 (12):1456–1547.

    Google Scholar 

  4. MEI Feng-xiang. Stability of equilibrium for the autonomous Birkhoffian system [J].Chinese Science Bulletin, 1993,38(10):816–819.

    Google Scholar 

  5. WU Hui-bin, MEI Feng-xiang. Transformation theory of generalized Birkhoffian system [J].Chinese Science Bulletin, 1995,40(10):885–888. (in Chinese)

    MathSciNet  Google Scholar 

  6. MEI Feng-xiang, Lévesque E I. Generalized canonical realization and Birkhoff's realization of Chaplygin's nonholonomic system [J].Transactions of the CSME, 1995,19(2):59–73.

    Google Scholar 

  7. MEI Feng-xiang, Poisson's theory of Birkhoffian system [J].Chinese Science Bulletin, 1996,41 (8):641–645.

    MathSciNet  Google Scholar 

  8. MEI Feng-xiang. Stability of motion for a constrained Birkhoffian system in terms of independent variables[J].Applied Mathematics and Mechanics (English Edition), 1997,18(1):55–60.

    MathSciNet  Google Scholar 

  9. MEI Feng-xiang. The progress of research on dynamics of Birkhoff's system[J].Advances in Mechanics, 1997,27(4):436–446. (in Chinese)

    Google Scholar 

  10. GUO Ying-xiang, MEI Feng-xiang. Integrability for Pfaff constrained systems: A geometrial theory [J].Acta Mechanica Sinica, 1998,14(1):85–91.

    Google Scholar 

  11. MEI Feng-xiang, ZHANG Yong-fa, SHANG Mei. Lie symmetries and conserved quantities of Birkhoffian system[J].Mechanics Research Communications, 1999,26(1):7–12.

    Article  MathSciNet  Google Scholar 

  12. CHEN Xiang-wei, LUO Shao-kai, MEI Feng-xiang. Bifurcation of equilibrium points for second order autonomous Birkhoffian system[J].Acta Mechanica Solida Sinica, 2000,21(3):251–255. (in Chinese)

    Google Scholar 

  13. GUO Yong-xin, LUO Shao-kai, SHANG Mei,et al. Birkhoffian formulations of nonholonomic constrained systems[J].Reports on Mathematical Physics, 2001,47(3):313–322.

    Article  MathSciNet  Google Scholar 

  14. MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-fa,et al. Dynamics of Birkhoffian Systems [M]. Beijing: Beijing Institute of Technology Press, 1996. (in Chinese)

    Google Scholar 

  15. MEI Feng-xiang.Applications of Lie Groups and Lie Algebras on Constrained Mechanical Systems [M]. Beijing: Science Press, 1999. (in Chinese)

    Google Scholar 

  16. LI Zi-ping.Classical and Quantum Constrained Systems and Their Symmetries[M]. Beijing: Beijing Polytechnica University Press, 1993. (in Chinese)

    Google Scholar 

  17. LUO Shao-kai. On the theory of relativistic analytical mechanics [J].Teching Material Communication, 1987,(5):31–34. (in Chinese)

    Google Scholar 

  18. LUO Shao-kai. Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic system [A]. In: WANG Zhao-lin Ed.Proc. ICDVC[C]. Beijing: Peking University Press, 1990,645–652.

    Google Scholar 

  19. LUO Shao-kai. Dynamical theory of relativistic nonlinear nonholonomic system[J].Shanghai Journal of Mechanics, 1991,12(1):67–70. (in Chinese)

    Google Scholar 

  20. LUO Shao-kai. Relativistic Hamilton principles and Lagrange equations in the generalized event space[J].College Physics, 1992,11(10):14–16. (in Chinese)

    Google Scholar 

  21. LUO Shao-kai. Relativistic generalized Volterra equations of variable mass high-order nonlinear nonholonomic system[J].Acta Mathematica Scientia, 1992,12(Supplementary issue):27–29. (in Chinese)

    Google Scholar 

  22. LUO Shao-kai. Relativistic variation principles and equations of motion for variable mass controllable mechanics system[J].Applied Mathematics and Mechanics (English Edition), 1996,17(7):683–692.

    Article  MathSciNet  Google Scholar 

  23. LI Yuan-cheng, FANG Jian-hui. Unified form of variable mass of universal D'Alembert principle with relativity[J].College Physics, 1991,13(6):27–29. (in Chinese)

    Google Scholar 

  24. FANG Jian-hui, LI Yuan-cheng. The variation principle of relativistic mechanics of variable mass system in the velocity space[J].Mechanics and Practice, 1994,13(5):19–20. (in Chinese)

    Google Scholar 

  25. LUO Shao-kai. Rotational relativistic mechanics and rotational relativistic analytical mechanics [J].Journal of Beijing Institute of Technology, 1996,16(S1):154–158. (in Chinese).

    Google Scholar 

  26. LUO Shao-kai. The theory of rotational relativistic analytical mechanics[J].Applied Mathematics and Mechanics (English Edition), 1998,19(1):45–58.

    MathSciNet  Google Scholar 

  27. FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. Algebraic structures and Poisson integrals of relativistic dynamical equations for rotational systems [J].Applied Mathematics and Mechanics (English Edition), 1999,20(11):1266–1274.

    MathSciNet  Google Scholar 

  28. FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. Lie symmetries and conserved quantities of rotational relativistic systems[J].Applied Mathematics and Mechanics (English Edition), 2000,21 (5):549–556.

    MathSciNet  Google Scholar 

  29. LUO Shao-kai, GUO Yong-xin, CHEN Xiang-wei,et al. Integration theory of the dynamics of a rotational relativistic system[J].Acta Physica Sinica, 2001,50(11):2053–2058. (in Chinese)

    Google Scholar 

  30. QIAO Yong-fen, LI Ren-Jie, MENG Jun. Lindelof's equations of nonholonomic rotational relativistic systems[J].Acta Physica Sinica, 2001,50(9):1637–1642 (in Chinese)

    Google Scholar 

  31. FANG Jian-hui, ZHAO Song-qing. Lie symmetries and conserved quantities of relativistic rotational variable mass system[J].Acta Physica Sinica, 2001,50(3):390–393. (in Chinese)

    MathSciNet  Google Scholar 

  32. FU Jing-li, WANG Xin-min. Li symmetries and conserved quantities of relativistic Birkhoff systems [J].Acta Physica Sinica, 2000,49(6):1023–1029. (in Chinese)

    MathSciNet  Google Scholar 

  33. FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. The Noether's theory of relativistic Birkhoff systems [J].Acta Mechanica Solida Sinica, 2001,22(3):263–267. (in Chinese)

    Google Scholar 

  34. FU Jing-li, CHEN Li-qun, LUO Shao-kai,et al., On the research for the dynamics of relativistic Birkhoff systems[J].Acta Physica Sinica, 2001,50(12):2289–2295. (in Chinese)

    MathSciNet  Google Scholar 

  35. LUO Shao-kai, FU Jing-li, CHEN Xiang-wei. Basic theory of relativictic Birkhoffian dynamics of rotational system[J].Acta Physica Sinica, 2001,50(3):383–389. (in Chinese)

    MathSciNet  Google Scholar 

  36. LUO Shao-kai, CHEN Xiang-wei, FU Jing-li. Birkhoff's equations and geometrical theory of rotational relativistic system[J].Chinese Physics, 2001,10(4):271–276.

    Article  Google Scholar 

  37. LUO Shao-kai, GUO Yong-xin, CHEN Xiang-wei,et al. A field method for solving the equations of motion of a rotational relativistic Birkhoffian system[J].Acta Physica Sinica, 2001,50(11):2049–2052. (in Chinese)

    Google Scholar 

  38. Noether A E. Invariance variations problems[J].Kgl Ges Wiss Nachr Göttingen Math-Phys, 1918, (2):235–257.

    Google Scholar 

  39. Candottie E, Palmieri C, Vitale B. On the inversion of Noether's theory in classical dynamical system[J].America Journal of Physics, 1972,40(5):424–429.

    Article  Google Scholar 

  40. Djukić Dj S, Vujanović B. Noether's theory in classical nonconservative mechanics[J].Acta Mechanica, 1975,23(1):17–27.

    Article  MathSciNet  Google Scholar 

  41. Vujanović B. Conservation laws of dynamical system via D'Alembert principle[J].International Journal of Non-Linear Mechanics, 1978,13(2):185–197.

    Article  MathSciNet  Google Scholar 

  42. Vujanović B. A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss [J].Acta Mechanica, 1986,65(1):63–80.

    Article  Google Scholar 

  43. LI Zi-ping. Symmetrical transformation of constrained system[J].Acta Physica Sinica, 1981,30 (12):1699–1705. (in Chinese)

    Google Scholar 

  44. LI Zi-ping. Canonical form's Noether theorem and its inverse theorem of nonconservative requar system[J].Chinese Science Bulletin, 1992,37(23):2204–2205. (in Chinese).

    Google Scholar 

  45. Bahar L Y, Kwatny H G. Extension of Noether's theory to constrained nonconservative dynamical systems[J].International Journal of Non-Linear Mechanics, 1987,22(2):125–138.

    Article  MATH  MathSciNet  Google Scholar 

  46. LIU Duan. Conserved laws of nonholonomic nonconservative dynamical system [J].Acta Mechanica Sinica, 1989,21(1):75–83 (in Chinese)

    MathSciNet  Google Scholar 

  47. LIU Duan. Noether's theorem and Noether's inverse theorm of nonholonomic nonconservative dynamical system[J].Science in China, Series A, 1991,31(4):419–429 (in Chinese)

    Google Scholar 

  48. LUO Shao-kai. Generalized Noether's theorem of nonholonomic nonpotential system in noninertial reference frame[J].Applied Mathematics and Mechanics (English Edition), 1991,12(9):927–934.

    MathSciNet  Google Scholar 

  49. LUO Shao-kai. Generalized Noether's theorem of variable mass higher-order nonholonomic mechanical system in noninertial reference frame [J].Chinese Science Bulletin, 1991,36(22):1930–1932. (in Chinese)

    Google Scholar 

  50. LUO Shao-kai. Generalized conserved laws of relativistic mechanics [J].Journal of Xinyang Teachers College, 1991,4(4):57–64 (in Chinese)

    Google Scholar 

  51. LUO Shao-kai. On the invariant theory of nonholonomic system with constraints of non-Chetaev type[J].Acta Mechanica Solida Sinica, 1993,6(1):47–57.

    Article  Google Scholar 

  52. ZNAO Yue-yu, MEI Feng-xiang.Symmetries and Conserved Quantities of Mechanical System [M]. Beijing: Science Press, 1999,1–72. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Lupin Zong-chi

Foundation items: the National Natural Science Foundation of China (19972010); the Natural Science Foundation of Henan Province (984053100, 998040080); the Scientific Research Foundation of the Education Bureau of Human Province (02C033)

Biography: Lupuo Shao-kai (1957−), Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao-kai, L. Form invariance and noether symmetrical conserved quantity of relativistic Birkhoffian systems. Appl Math Mech 24, 468–478 (2003). https://doi.org/10.1007/BF02439627

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439627

Key words

Chinese Library Classification

2000 MR Subject Classfication

Navigation