Applied Mathematics and Mechanics

, Volume 22, Issue 4, pp 495–500 | Cite as

Positive solutions of boundary value problems for second-order singular nonlinear differential equations

  • Li Ren-gui
  • Liu Li-shan


New existence results are presented for the singular second-order nonlinear boundary value problems u″+g(t)f(u)=0, 0<t<1, αu(0)−βu′(0)=0, γu(1)+δu′(1)=0 under the conditions 0≤f 0 + <M1, m1<f ≤∞ or 0≤f + <M1, m1<f 0 ≤∞, where\(\begin{gathered} f_0^ + = \overline {\lim } _{u \to 0} f(u)/u, f_\infty ^ - = \underline {\lim } _{u \to \infty } f(u)/u, f_0^ - = \hfill \\ \underline {\lim } _{u \to 0} f(u)/u, f_\infty ^ + = \overline {\lim } _{u \to \infty } f(u)/u \hfill \\ \end{gathered} \), g may be singular at t=0 and/or t=1. The proof uses a fixed point theorem in cone theory.

Key words

second-order singular boundary value problems positive solutions cone fixed point 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erbe L H, WANG Hai-yan. On the existence of positive solutions of ordinary differential equations [J].Proc Amer Math Soc, 1994,120(3):743–748.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    MA Ru-yun. Positive solutions of singular second-order boundary value problem[J].Acta Math Sinica, 1998,41(6):1225–1230 (in Chinese)MathSciNetGoogle Scholar
  3. [3]
    Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].SIAM Rev, 1976,18(4):620–709.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    GUO Da-jun.Nonlinear Funcational Analysis[M]. Jinan: Shandong Science and Technology Publishing House, 1985. (in Chinese)Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Li Ren-gui
    • 1
  • Liu Li-shan
    • 1
  1. 1.Department of MathematicsQufu Normal UniversityQufuP R China

Personalised recommendations