Applied Mathematics and Mechanics

, Volume 22, Issue 4, pp 448–459 | Cite as

Dynamics in Newtonian-Riemannian space-time (IV)

  • Zhang Rong-ye


Lagrangian mechanics in Newtonian-Riemannian space-time and relationship between Lagrangian mechanics and Newtonian mechanics, and between Lagrangian mechanics and Hamiltonian mechanics in N-R space-time are discussed.

Key words

Riemannian manifold tangent bundle cotangent bundle fiber bundle fiber vector field form field exterior differential absolute differential Lie derivative functional variation 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Curtis W D, Miller F R.Differential Manifolds and Theoretical Physics[M]. Orlando, Florida: Academic Press, Inc, 1985.Google Scholar
  2. [2]
    Arnold V I.Mathematical Methods of Classical Mechanics[M]. New York: Springer-Verlag, 1978.Google Scholar
  3. [3]
    von Westenhoz C.Differential Forms in Mathematical Physics[M]. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978.Google Scholar
  4. [4]
    Schutz B F.Geometrical Methods of Mathematical Physics[M]. Bath, Cambridge: Cambridge University Press, 1980.Google Scholar
  5. [5]
    Burke W L.Applied Differential Geometry[M]. New York: Cambridge University Press, 1985.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Zhang Rong-ye
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingP R China

Personalised recommendations