Applied Mathematics and Mechanics

, Volume 22, Issue 4, pp 436–447 | Cite as

Dynamics in Newtonian-Riemannian space-time (III)

  • Zhang Rong-ye


The Hamiltonian mechanics in Newtonian-Riemannian space-time and its application to hydromechanics are discussed.

Key words

Riemannian manifold fiber bundle exterior differential absolute differential Lie derivative invariant form integral invariant comoving time derivative 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gantmaher F. R..Lecture of Analytical mechanics [M]. ZHONG, Feng-e, XUE Wen-xi transl. Beijing: People's Education Press, 1963, 1–161. (Chinese version)Google Scholar
  2. [2]
    von Westenholz C.Differential Forms in Mathematical Physics[M]. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978.Google Scholar
  3. [3]
    Olver P J.Applications of Lie Groups to Differential Equations[M]. New York: Springer-Verlag, 1986.Google Scholar
  4. [4]
    Burke W L.Applied Differential Geometry[M]. New York: Cambridge University Press, 1985.Google Scholar
  5. [5]
    Schutz B F.Geometrical Methods of Mathematical Physics[M]. Bath, Cambridge: Cambridge University Press, 1980.Google Scholar
  6. [6]
    Curtis W D, Miller F R.Differential Manifolds and Theoretical Physics[M]. Orlando, Florida: Acadmic Press Inc, 1985.Google Scholar
  7. [7]
    Arnold V I.Mathematical Methods of Classical Mechanics[M]. New York: Springer-Verlag, 1978.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Zhang Rong-ye
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingP R China

Personalised recommendations