Advertisement

Applied Mathematics and Mechanics

, Volume 22, Issue 4, pp 379–384 | Cite as

Moving boundary problem for diffusion release of drug from a cylinder polymeric matrix

  • Tan Wen-chang
  • Wu Wang-yi
  • Yan Zong-yi
  • Wen Gong-bi
Article
  • 54 Downloads

Abstract

An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for non-erodible matrices with perfect sink condition. The formulas of the moving boundary and the fractional drug release were given. The moving boundary and the fractional drug release have been calculated at various drug loading levels, and the calculated results were in good agreement with those of experiments. The comparison of the moving boundary in spherical, cylinder, planar matrices has been completed. An approximate formula for estimating the available release time was presented. These results are useful for the clinic experiments. This investigation provides a new theoretical tool for studying the diffusion release of drug from a cylinder polymeric matrix and designing the controlled released drug.

Key words

drug moving boundary problem diffusion release system approximate analytical solution 

CLC numbers

O29 TB11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Paul D R, Mcspadden S K. Diffusional release of a solute from a polymer matrix[J].J Membrane Sci, 1976,1(1):33–48.CrossRefGoogle Scholar
  2. [2]
    Lee P I. Diffusional release of a solute from a polymer matrix: approximate analytical solution[J].J Membrane Sci, 1980,7(3):255–275.CrossRefGoogle Scholar
  3. [3]
    Annette L B. Release rate from topical formulation containing drugs in suspension[J].J Controlled Release, 1998,52(1):141–148.CrossRefGoogle Scholar
  4. [4]
    Abdekhodaie M J, Cheng Y L. Diffusional releases of a dispersed solute from a spherical polymer matrix[J].J Membrane Sci 1996,115(2):171–178.CrossRefGoogle Scholar
  5. [5]
    Ritger P L, Peppas N A. A simple equation for description of solute release-I: fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J].J Controlled Release, 1987,5(2):23–36.CrossRefGoogle Scholar
  6. [6]
    AN Ling-ling, XU Ming-yu. A theoretical modeling for release of medicaments from cylindrical matrices containing drug in suspension[A]. In: Danielhk Chow, Y T Zheng Eds.Proceedings of International Conference on Biomedical Engineering[C]. Hong Kong: Hong Kong Institution of Engineers 1996,425–428.Google Scholar
  7. [7]
    GUO Zhong-heng.Morden Mathematics and Mechanics[M]. Beijing: Peking University Press, 1987,115–143. (in Chinese)Google Scholar
  8. [8]
    Rosemen T J, Higuchi W I. Release of medroxyprogesterone acetate from a silicone polymer[J].J Pharmaceutical Sci 1970,59(3):353–357.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Tan Wen-chang
    • 1
  • Wu Wang-yi
    • 1
  • Yan Zong-yi
    • 1
  • Wen Gong-bi
    • 1
  1. 1.Department of Mechanics and Engineering SciencePeking UniversityBeijingP R China

Personalised recommendations