Skip to main content
Log in

Nonlinear dynamics modeling of mechanical periodicity of end diastolic volume of left ventricle

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The cardiovascular system with a lumped parameter model is treated, in which the Starling model is used to simulate left ventricle and the four-element Burattini & Gnudi model is used in the description of arterial system. Moreover, the feedback action of arterial pressure on cardiac cycle is taken into account. The phenomenon of mechanical periodicity (MP) of end diastolic volume (EDV) of left ventricle is successfully simulated by solving a series of one-dimensional discrete nonlinear dynamical equations. The effects of cardiovascular parameters on MP is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

X n +1:

The EDV of the (n+1)th heartbeat

X n :

The EDV of thenth heartbeat

Y n :

The eject volume of thenth heartbeat

U n :

The mass of the blood through vein to heart

P s :

The systolic pressure of left ventricle

P d :

The diastolic pressure of left ventricle

P v :

The pressure

P a :

The arterial pressure

P n :

The average arterial pressure

ΔP :

The increment of arterial pressure

F d :

Coefficient of diastolic LV

L d :

Coefficient of diastolic LV

F s :

Coefficient of systolic LV

L s :

Coefficient of systolic LV

V s :

The volume of systolic LV

T :

The cardiac cycle

k :

The ratio of ejection time to the whole cardiac cycle

R a :

The resistance of the arterial valve

R m :

The resistance in vein flow

R :

The external resistance

Q :

The volume of blood throughR in a cardiac cycle

Q 1 :

The volume of blood throughL in a cardiac cycle

C :

The compliance

L :

The inertia

T s :

The minimum value of cardiac cycle

T m :

The maximum value of cardiac cycle

α:

The coefficient of feedback

γ:

The coefficient of feedback

References

  1. Goldberger A L. Is the normal heartbeat chaotic or homeostatic? [J].News Physical Sci, 1991,6 (2):87–91.

    Google Scholar 

  2. Gleason W L, Braunwald E. Studies on Slarling's law of the heart-IV relationship between left ventricular end-diastolic volume and stroke volume in man, with observation on the mechanism of pulsus alternans[J].Circulation, 1962,25(5):841–848.

    Google Scholar 

  3. Noble E I, Nutter D O. The demonstration of alternating contractile state in pulsus alternans[J].J Clin Invest, 1970,49(5):1166–1177.

    Article  Google Scholar 

  4. Ritzenberg A L, Adam D R, Cohen R J. Period multiplying: evidence for nonlinear behavior of canine heart[J].Nature Lond, 1984,307(5947):159–161.

    Article  Google Scholar 

  5. Goldberger A L, Bhargara V, West B J. Nonlinear dynamics of the heartbeat-II Subharmonic bifurcates of the cardiac interbeat internal in sinus mode disease[J].Physica, 1985,17D(2):201–214.

    Google Scholar 

  6. Hada Y, Wolfe C, Craige E. Pulsus alternans determined by birentricular simultaneous time intervals[J].Circulation, 1982,65(3):617–626.

    Google Scholar 

  7. Lee Y C, Sutton S J. Pulsus alternans: echocardiographic evidence of reduced venous return and alternating end-diastolic fiber length as causative factors[J].Chest, 1981,80(6):756–759.

    Google Scholar 

  8. Cannon R O, Schenke W H, Bonow R O, et al. Left Ventricular pulsus alternans in patients with hypertrophic cardiomyopathy and severe obstruction to left ventricular outflow[J].Circulation, 1986,73(2):276–285.

    Google Scholar 

  9. Cohn K E, Sandler H, Hancock E N. Mechanism of pulsus alternans[J].Circulation, 1967,36(2):372–380.

    Google Scholar 

  10. Depace N L, Iskandrian A S, Hakki A H. Pulsus alternans after valve replacement for aortic regurgitation[J].Am J Cardial, 1983,52(2):211–213.

    Article  Google Scholar 

  11. Hess O M, Surber E P, Ritter M, et al. Pulsus alternans: its influence on systolic and diastolic function in aortic valve disease[J].J Am Coll Cardiol, 1984,4(1):1–7.

    Article  Google Scholar 

  12. Guntheroth W G. Pulsus alternans[J].Circulation, 1982,66(2):479–480.

    Google Scholar 

  13. Laskey W K, John Sutton M S, Unterker W J, et al. Mechanics of Pulsus alternans in aortic valve stenosis[J].Am J Cardiol, 1983,52(7):809–812.

    Article  Google Scholar 

  14. McGaugher M D, Maughan W L, Sunagawa K, et al. Alternating contractility in Pulsus alternans studied in the isolated canice heart[J].Circulation, 1985,71(2):357–362.

    Google Scholar 

  15. Adler D, Wong A Y K, Klassen G A. Model of calcium movements in the mammalian myocardium, interval-strength relationship[J].J Theor Biol, 1985,113(3):379–394.

    Article  Google Scholar 

  16. Adler D, Wong A Y K, Mahler Y. Model of mechanical alternans in the mammalian myocardium [J].J Theor Biol, 1985,117(4):563–577.

    Article  Google Scholar 

  17. Winfree A T.The Geometry of Biological Time[M]. New York: Springer-Verlag, 1980.

    Google Scholar 

  18. Winfree A T.The Timing of Biological Clock[M]. New York: Freeman, 1987.

    Google Scholar 

  19. Othmer H G.Nonlinear Oscillations in Biology and Chemistry [M]. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  20. Kanters Jorgen K, Hojgaare Michael V, Agner Erik, et al. Short and long term variations in nonlinear dynamics of heart rate variability[J].Cardiovascular Research, 1996,31(2):400–409.

    Article  Google Scholar 

  21. Vila J, Palacios F, Presedo J, et al. Time-frequency analysis of heart-rate variability[J].IEEE Engineering in Medicine and Biology, 1997,16(5):119–126.

    Article  Google Scholar 

  22. Ben-Haim Shlomo A, Frucher Gila, Hayam Gal, et al. Periodicity's of cardiac mechanics[J].Am J Physiol, 1991,261(2):H424-H433.

    Google Scholar 

  23. Frucher Cila, Ben-Ham Shlomo. Stability analysis of one-dimensional systems applied to an isolate beating heart[J].J Theor Biol, 1991,148(2):175–192.

    Google Scholar 

  24. Patterson H. The regulation of the heart beat[J].Am J Physiol, 1914,48(2):465.

    Google Scholar 

  25. FENG Zhong-gang, WU Wang-yi, SUN Dong-ning. Lumped-parameter Model to simulate afterload of systemic circulation[J].Chinese Journal of Biomedical Engineering, 1997,16(3): 212–218. (in Chinese)

    Google Scholar 

  26. Burattini, Gnudi. Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results[J].Med Biol Eng Comput, 1982,20(2):134–144.

    Article  Google Scholar 

  27. Campell K B, Ringo J A, Neti C, et al. Informational analysis of left ventricle-systemic arterial interaction[J].Ann Biomed Eng, 1984,12(3):209–231.

    Google Scholar 

  28. Stergiopulos Nikos, Westerhoff Berend E, Westerhoof Nico. Total arterial inertance as the fourth element of the Windkessel model[J].Am J Physiol, 1999,276(1):H81-H88.

    Google Scholar 

  29. Kroner P I, Show M J, Other J B. Steady-state properties of barorecepto-heart rate reflex in essential hypertension in man[J].Clin Exp Pharamacol Physiol, 1974,1(1):65–76.

    Google Scholar 

  30. Westerhoof N, Elginga G, Sipkema I. An artificial arterial system for pumping hearts[J].J Appl Physiol, 1971,31(5):776–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by DAI Shi-qiang

Biography: XU Shi-xiong (1943-), Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi-xiong, X., Xiao-chun, M. Nonlinear dynamics modeling of mechanical periodicity of end diastolic volume of left ventricle. Appl Math Mech 22, 1183–1191 (2001). https://doi.org/10.1007/BF02436454

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02436454

Key words

CLC number

Navigation