Skip to main content

Advertisement

Log in

Characteristics of toxin-neutralization by anti-tetanus human monoclonal antibodies directed against the three functional domains [A], [B], and [C] of the tetanus toxin molecule and a reliable method for evaluating the protective effects of monoclonal antibodies

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Five anti-tetanus human monoclonal antibodies (MAbs) produced by hybrid cell lines we established previously were characterized. Their abilities to neutralize tetanus toxinin vitro and to protect mice against challenge with toxin were studied by observing the changes in the progress of symptoms in mice. Immunostaining showed that MAbs MAb-G4 and G2 recognized the N-terminal domain, [A] and the C-terminal domain, [C] of the tetanus toxin molecule, respectively, while MAbs MAb-G1, G3 and G6 recognized its middle domain, [B]. Enzyme-linked immunosorbent assay showed that the binding affinity of MAb-G3 was 2.9 X 1010 M−1 and those of the other MAbs were as high as approximately 1011 M−1. Inin vitro neutralization experiments, at sufficient doses all the MAbs as single reagents protected mice completely against the effect of tetanus toxin. However, at lower doses than those sufficient to rescue mice, the kinetic patterns of progress of symptoms with the individual MAbs differed with each other and, except for MAb-G4, were different from that of anti-tetanus human polyclonal antibody. They suppressed the development and/or slowed the rate of progress of symptoms for over 96 h and delayed death of the mice. We propose that the comparison of the minimum survival dose with that of human polyclonal antibody of known international units is a reliable method for estimating the actual protective activity of a MAb. Intravenous (IV) injection of doses of individual MAbs or their mixtures at over 0.03 IU per mouse protected mice from subsequent challenge with 20 MLD of tetanus toxin. Moreover, mice could be rescued by IV injection of individual MAbs or their mixture at doses equivalent to 0.03 IU per mouse, even 10 h after intramuscular (IM) injection of 4 MLD of tetanus toxin. The importance of these findings for evaluating the protective effects of anti-tetanus MAbs for clinical use is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnert-Hilger G., Bizzini B., Goretzki K., Müller, H., Völckers C. andHabermann E. (1983): Monoclonal antibodies against tetanus toxin and toxoid. — Med. Microbiol. Immunol.172: 123–135.

    Article  PubMed  CAS  Google Scholar 

  2. Chiorazzi N., Wasserman R.L. andKunkel H.G. (1982): Use of Epstein-Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas. — J. Exp. Med.156: 930–935.

    Article  PubMed  CAS  Google Scholar 

  3. Ebisawa I., Matsuhashi C., Yamamoto A., Kurosu Y. andOtsuka T. ((1981): Clinical experience in the use of intravenously injectable tetanus-immune human gamma globulin TIG(i). — Kansenshogaku Zasshi (J. Jpn. Assoc. Infect. Dis.)55: 92–98 (in Japanese).

    CAS  Google Scholar 

  4. Gigliotti F. andInsel R.A. (1982): Protective human hybridoma antibody to tetanus toxin. — J. Clin. Invest.70: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  5. Habermann E. andGoretzki K. (1985): Monoclonal antibodies against tetanus toxin and tetanus toxoid.In: Monoclonal Antibodies against Bacteria, Vol. I. A.J.L. Macario and E.C. de Macario (eds.). —Academic Press, New York, pp. 191–205.

    Google Scholar 

  6. Hirata Y. andSugawara I. (1987): Characterization of mouse-human hybridoma as a useful fusion partner for the establishment of mouse-human-human hybridoma secreting anti-tetanus toxoid human monoclonal antibody of IgM or IgG class. —Microbiol. Immunol.31: 231–245.

    PubMed  CAS  Google Scholar 

  7. Ho M.-K., Rand N., Murray J., Kato K. andRabin H. (1985):In vitro immunization of human lymphocytes. I. Production of human monoclonal antibodies against bombesin and tetanus toxoid. — J. Immunol.135: 3831–3838.

    PubMed  CAS  Google Scholar 

  8. Ichimori Y., Sasano K., Itoh H., Hitotsumachi S., Kimura Y., Kaneko K., Kida M. andTsukamoto K. (1985): Establisment of hybridomas secreting human monoclonal antibodies against tetanus toxin and hepatitis B virus surface antigen. — Biochem. Biophys. Res. Commun.129: 26–33.

    Article  PubMed  CAS  Google Scholar 

  9. Ildirim I. (1975): General and intrathecal serotherapy.In: Proceedings of the Fourth International Conference on Tetanus. — Fondation Mérieux. Lyon pp. 371–382.

  10. Kamei M., Hashizume S., Sugimoto N., Ozutsumi K. andMatsuda M. (1990): Establishment of stable mouse/human-human hybrid cell lines producing large amounts of anti-tetanus human monoclonal antibodies with high neutralizing activity. — Eur. J. Epidemiol.6: 386–397.

    Article  PubMed  CAS  Google Scholar 

  11. Kimoto H. (1985): A method for estimating the affinity of monoclonal antibodies — a solid phase method. — Saibôkogaku (Cell Technology)4: 792–796 (in Japanese).

    Google Scholar 

  12. Kitano K., Iwamoto K., Shintani Y. andAkiyama S. (1988): Effective production of a human monoclonal antibody against tetanus toxoid by selection of high productivity clones of a heterohybridoma. — J. Immunol. Methods109: 9–16.

    Article  PubMed  CAS  Google Scholar 

  13. Kozbor D., Lagarde A.E. andRoder J.C. (1982): Human hybridomas constructed with antigenspecific Epstein-Barr virus-transformed cell lines. —Proc. Natl. Acad. Sci. (USA)79: 6651–6655.

    Article  CAS  Google Scholar 

  14. Kozbor D. andRoder J.C. (1981): Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. — J. Immunol.127: 1275–1280.

    PubMed  CAS  Google Scholar 

  15. Kozbor D., Roder J.C., Chang T.H., Steplewski Z. andKoprowski H. (1982): Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. —HybridomaI: 323–328.

    Article  Google Scholar 

  16. Laemmli U.K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  17. Larrick J.W. Truitt K.E., Raubitschek A.A., Senyk G. andWang J.C.N. (1983): Characterization of human hybridomas secreting antibody to tetanus toxoid. —Proc. Natl. Acad. Sci. USA80: 6376–6380.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda M. (1989): The structure of tetanus toxin.In: Botulinum Neurotoxin and Tetanus Toxin. L.L. Simpson (ed.). — Academic Press, San Diego pp. 69–92.

    Chapter  Google Scholar 

  19. Matsuda M., Lei D.L., Sugimoto N. andOzutsumi K. (1989): Isolation, purification and characterization of Fragment [B], the NH2-terminal half of the heavy chain of tetanus toxin. — Infect. Immun.57: 3588–3593.

    PubMed  CAS  Google Scholar 

  20. Matsuda M., Sugimoto N. andOzutsumi K. (1982): Acute botulinum-like intoxication by tetanus toxin in mice and the localization of the acute toxicity in the N-terminal papain-fragment of the toxin.In: Proceedings of the 6th International Conference on Tetanus. — Fondation Marcel Mérieux, Lyon, pp. 21–32.

    Google Scholar 

  21. Matsuda M. andYoneda M. (1975): Isolation and purification of two antigenically active, “complementary” polypeptide fragments of tetanus neurotoxin. — Infect. Immun.12: 1147–1153.

    PubMed  CAS  Google Scholar 

  22. Matsuda M. andYoneda M. (1977): Antigenic substructure of tetanus neurotoxin. — Biochem. Biophys. Res. Commun.77: 268–274.

    Article  PubMed  CAS  Google Scholar 

  23. Ozutsumi K., Lei D.L., Sugimoto N. andMatsuda M. (1989): Isolation and purification by high performance liquid chromatography of a tetanus toxin Fragment (Fragment [A-B]) derived from mildly papain-treated toxin. — Toxicon27: 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  24. Scrivner D., Kristof S. andRodey G. (1987): Human T4+ T-lymphocyte clones specific for the B fragment of tetanus toxin. — Human Immunol.19: 245–254.

    Article  CAS  Google Scholar 

  25. Sing A.P. andSingh S. (1966): Observations on tetanus mortality in cases treated with and without A.T.S.J. — Indian Med. Assoc.46: 237.

    Google Scholar 

  26. Simpson L.L., Lake P. andKozaki S. (1990): Isolation and characterization of a novel human monoclonal antibody that neutralizes tetanus toxin. — J. Pharmacol. Exp. Ther.254: 98–103.

    PubMed  CAS  Google Scholar 

  27. Vaishnava H., Goyal R.K., Neogy C.N. andMathur G.P. (1966): A controlled trial of antiserum in the treatment of tetanus. — Lancet2: 1371.

    Article  PubMed  CAS  Google Scholar 

  28. Van Heyningen W.E. andMellanby J.H. (1971): Tetanus toxin. —In: Microbial Toxins. Vol. II, S. Kadis, T.C. Montie and S.J. Ajl (eds.). — Academic Press, New York. pp. 69–108.

    Google Scholar 

  29. Ziegler-Heitbrock H.W.L., Reiter C., Trenkmann J., Futterer A. andRiethmuller G. (1986): Protection of mice against tetanus toxin by combination of two human monoclonal antibodies recognizing distinct epitopes on the toxin molecule. — Hybridoma5: 21–31.

    Article  PubMed  CAS  Google Scholar 

  30. Zurawski V.R. Jr, Haber E. andBlack P.H. (1978): Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines. —Science199: 1439–1441.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, M., Kamei, M., Sugimoto, N. et al. Characteristics of toxin-neutralization by anti-tetanus human monoclonal antibodies directed against the three functional domains [A], [B], and [C] of the tetanus toxin molecule and a reliable method for evaluating the protective effects of monoclonal antibodies. Eur J Epidemiol 8, 1–8 (1992). https://doi.org/10.1007/BF02427384

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427384

Key words

Navigation