Pharmaceutisch Weekblad

, Volume 5, Issue 5, pp 228–233 | Cite as

Allosteric properties of the oxyphenbutazone-human serum albumin complex

  • J. H. M. Dröge
  • L. H. M. Janssen
  • J. Wilting
Original Articles


The conformational change of albumin which occurs around physiological pH, the so-called N-B transition, has been studied by measuring the induced circular dichroic signal of the oxyphenbutazone-albumin complex. This N-B transition has been characterized by a set of parameters according to the two-state model of Monod, Wyman and Changeux. The influence of calcium ions on the N-B transition has been interpreted in terms of a change in some of the parameters describing the two-state model,viz. a decrease of the apparent pK value of the histidines and of the apparent allosteric constant of the oxyphenbutazone-albumin complex. This apparent pK change increases with increasing Ca2+ concentration, whereas the apparent allosteric constant approaches a final value at 5 mM Ca2+. From acid-base titration curves of albumin in the presence and in the absence of Ca2+ it could be concluded that in the presence of Ca2+ less histidines are titratable than in the absence of Ca2+. Assuming that these histidines are not involved in the N-B transition it follows that at least four to five histidines are involved in the N-B transition.


Calcium Albumin Serum Albumin Histidine Conformational Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anton, A.H., andW.T. Corey (1971)Acta Pharmacol. 29, Suppl. 3, 134–151.Google Scholar
  2. Chignell, C.F., Ed. (1976)Methods in Pharmacology, Vol. 11. Meredith Corporation, New York, 138–140.Google Scholar
  3. Dröge, J.H.M., L.H.M. Janssen andJ. Wilting (1982a)Biochem. Pharmacol. 31, 3775–3779.PubMedGoogle Scholar
  4. Dröge, J.H.M., J. Wilting andL.H.M. Janssen (1982b)Biochem. Pharmacol. 31, 3781–3786.PubMedGoogle Scholar
  5. Elbary, A.A., J.J. Vallner andC.W. Whitworth (1981)Acta Pharm. Suec. 18, 379–390;Ibidem (1982)J. Pharm. Sci. 71, 241–244.Google Scholar
  6. Fasman, G.D., Ed. (1976)CRC Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data I. CRC Press Inc., Cleveland, 319.Google Scholar
  7. Fehske, K.J., W.E. Müller andU. Wollert (1981)Biochem. Pharmacol. 30, 687–692.PubMedGoogle Scholar
  8. Fersht, A. (1977)Enzyme Structure and Mechanism. W.H. Freeman and Company, Reading/San Francisco, 219.Google Scholar
  9. Fleitman, J., andJ.H. Perrin (1982)Int. J. Pharm. 11, 227–236.Google Scholar
  10. Gillette, J.R. (1973)Ann. N.Y. Acad. Sci. 226, 6–17.PubMedGoogle Scholar
  11. Harmsen, B.J.M., S.H. De Bruin, L.H.M. Janssen, J.F. Rodrigues De Miranda andG.A.J. Van Os (1971)Biochemistry 10, 3217–3221.PubMedGoogle Scholar
  12. Janssen, L.H.M., andM.T. Van Wilgenburg (1978)Mol. Pharmacol. 14, 884–889.PubMedGoogle Scholar
  13. Janssen, L.H.M., S.H. De Bruin andG.A.J. Van Os (1970)Biochim. Biophys. Acta 221, 214–227.PubMedGoogle Scholar
  14. Janssen, L.H.M., M.T. Van Wilgenburg andJ. Wilting (1981)Biochim. Biophys. Acta 669, 244–250.PubMedGoogle Scholar
  15. Leonard, W.J., K.K. Vijai andJ.F. Foster (1963)J. Biol. Chem. 238, 1984–1988.PubMedGoogle Scholar
  16. Martin, B.K. (1975)Nature 207, 274–276.Google Scholar
  17. Monod, J., J. Wyman andJ.-P. Changeux (1965)J. Mol. Biol. 12, 88–118.PubMedGoogle Scholar
  18. Nikkel, H.J., andJ.F. Foster (1971)Biochemistry 10, 4479–4486.CrossRefPubMedGoogle Scholar
  19. Patel, I.H., andR.H. Levy (1979)Epilepsia 20, 85–90.PubMedGoogle Scholar
  20. Perrin, J.H., andD.A. Nelson (1974)Biochem. Pharmacol. 23, 3139–3145.CrossRefPubMedGoogle Scholar
  21. O'Rilly, R.A., andP.M. Aggeler (1970)Pharmacol. Rev. 22, 35–96.Google Scholar
  22. Rubin, M.M., andJ.-P. Changeux (1966)J. Mol. Biol. 21, 265–274.CrossRefPubMedGoogle Scholar
  23. Russu, I.M., N.T. Ho andC. Ho (1982)Biochemistry 21, 5031–5043.PubMedGoogle Scholar
  24. Schwartz, P.A., C.T. Rhodes andD.S. Greene (1981)Pharmacology 22, 364–370.PubMedGoogle Scholar
  25. Sjöholm, I., B. Ekman, A. Kober, I. Ljungstedt-Påhlman, B. Seiving andI. Sjödin (1979)Mol. Pharmacol. 16, 767–777.PubMedGoogle Scholar
  26. Van Der Giesen, W.F., andJ. Wilting (1983)Biochem. Pharmacol. 32, 281–285.PubMedGoogle Scholar
  27. Weast, R.C., Ed. (1978)CRC Handbook of Chemistry and Physics. CRC Press Inc., Cleveland, D-149.Google Scholar
  28. Wilting, J., M.M. Weideman, A.C.J. Roomer andJ.H. Perrin (1979)Biochim. Biophys. Acta 579, 469–473.PubMedGoogle Scholar
  29. Wilting, J., W.F. Van Der Giesen, L.H.M. Janssen, M.M. Weideman, M. Otagiri andJ.H. Perrin (1980a)J. Biol. Chem. 255, 3032–3037.PubMedGoogle Scholar
  30. Wilting, J., B.J. 'T Hart andJ.J. De Gier (1980b)Biochim. Biophys. Acta 626, 291–298.PubMedGoogle Scholar
  31. Wilting, J., W.F. Van Der Giesen andL.H.M. Janssen (1981)Biochem. Pharmacol. 30, 1025–1031.CrossRefPubMedGoogle Scholar
  32. Wosilait, W.D., andP. Ryan (1979)Res. Commun. Chem. Pathol. Pharmacol. 25, 577–584.PubMedGoogle Scholar
  33. Wyman, J. Jr. (1964)Adv. Protein Chem. 19, 223–286.PubMedGoogle Scholar
  34. Zurawski, V.R. Jr., andJ.F. Foster (1974)Biochemistry 13, 3465–3471.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1983

Authors and Affiliations

  • J. H. M. Dröge
    • 1
  • L. H. M. Janssen
    • 1
  • J. Wilting
    • 1
  1. 1.Department of Pharmaceutical Chemistry, Subfaculty of PharmacyState University of UtrechtGH UtrechtThe Netherlands

Personalised recommendations