Skip to main content
Log in

The canonical geodesic involution and harmonic spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove a property of the canonical geodesic involution for a general Riemannian manifold and we derive a new recursion formula for the even coefficients in the power series expansion for the shape operator of a geodesic sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BESSE, A.L.:Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, 93, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  2. CARPENTER, P. : PH.D. Thesis, Durham, 1980.

  3. CHEN, B.Y. and VANHECKE, L.: Differential geometry of geodesic spheres,J. Reine Angew. Math. 325 (1981), 28–67.

    MathSciNet  Google Scholar 

  4. GRAY, A.: Comparison theorems for volumes of tubes as generalizations of the -Weyl tube formula,Topology 21 (1982), 201–228.

    Article  MATH  MathSciNet  Google Scholar 

  5. GRAY, A. and VANHECKE, L.: The volumes of tubes about curves in a Riemannian manifold,Proc. London Math. Soc. 44 (1982), 215–243.

    MathSciNet  Google Scholar 

  6. GRAY, A. and VANHECKE, L. : The volumes of tubes in a Riemannian manifold, to appear inRend. Sem. Mat. Univ. e Politec. Torino.

  7. GRAY, A. and WILLMORE, T.J. : Mean-value theorems far Riemannian manifolds, to appear inProc. Roy. Soc. Edinburgh.

  8. GREEN, L.W.: A theorem of E. Hopf,Michigan Math. J. 5 (1958), 31–34.

    MATH  MathSciNet  Google Scholar 

  9. KOWALSKI, O.: The second mean-value operator on Riemannian manifolds,Proc. Conf. on Differential Geometry and its Applications (CSSR-GDR-Poland), Univerzita Karlova, Praha, 1981, 33–45.

    Google Scholar 

  10. RUSE, H., WALKER, A.G. and WILLMORE, T.J.:Harmonic Spaces, Cremonese, Roma, 1961.

    Google Scholar 

  11. VANHECKE, L.: 1-harmonic spaces are harmonic,Bull. London Math. Soc. 13 (1981), 409–411.

    MATH  MathSciNet  Google Scholar 

  12. VANHECKE, L.: A note on harmonic spaces,Bull. London Math. Soc. 13 (1981), 545–546.

    MATH  MathSciNet  Google Scholar 

  13. VANHECKE, L.: A conjecture of Besse on harmonic manifolds,Math. Z. 178 (1981), 555–557.

    Article  MATH  MathSciNet  Google Scholar 

  14. WILLMORE, T.J.: 2-point invariant functions and k-harmonic manifolds,Rev. Roumaine Math. Pures Appl. 13 (1968), 1051–1057.

    MATH  Google Scholar 

  15. WILLMORE, T.J. and EL HADI, K.: k-harmonic symmetric manifolds;Rev. Roumaine Math. Pores Appl. 15 (1970), 1573–1577.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanhecke, L. The canonical geodesic involution and harmonic spaces. Ann Glob Anal Geom 1, 131–136 (1983). https://doi.org/10.1007/BF02329741

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02329741

Keywords

Navigation