Chemistry of Heterocyclic Compounds

, Volume 33, Issue 5, pp 587–595 | Cite as

Quantum chemical study of the nature of regioselectivity in reactions of 2,4,6-triazidopyridines withtert-butylphosphaacetylene

  • S. V. Chapyshev
  • V. M. Anisimov


We have performed PM3 calculations for 2,4,6-triazido-3,5-dicyanopyridine and 2,4,6-triazido-3-chloro-5-cyanopyridine, and also the cycloadducts of these compounds with one and two tert-butylphosphaacetylene molecules. We have established that the selectivity of addition of a phosphaacetylene molecule at the γ-azido group of triazidopyridines is due to the specifics of the electronic properties and geometry of these groups, characterized by enhanced electrophilicity of the terminal nitrogen atoms, a greater contribution from atomic orbitals to the LUMO (lowest unoccupied molecular orbital), and greater bending of the chain of N−N−N atoms. The cycloaddition itself corresponds to the dipole-LUMO-controlled reaction type, and sequential addition of phosphaacetylene molecules at the azido groups of pyridines leads to formation of cycloadducts having lower LUMO energies. Nevertheless, the γ-azido groups of the triazidopyridines can remain stronger dipoles than the azide groups of the cycloadducts when the difference between the LUMO energies in the triazidopyridines and cycloadducts is no greater than 10 kcal/mole.


Pyridine Nitrogen Atom Azide Molecular Orbital Reaction Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Chapyshev and T. Ibata, Heterocycles,36, 2185 (1993).Google Scholar
  2. 2.
    S. V. Chapyshev, Khim. Geterotsikl. Soedin., No. 12, 1650 (1993).Google Scholar
  3. 3.
    S. V. Chapyshev, U. Bergstrasser, and M. Regitz, Khim. Geterotsikl. Soedin., No. 1, 67 (1996).Google Scholar
  4. 4.
    A. Padwa (ed.), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York (1984), p. 559.Google Scholar
  5. 5.
    R. B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. Engl.,8, 781 (1969).Google Scholar
  6. 6.
    R. Sustmann, Pure and Appl. Chem.,40, 1037 (1974).Google Scholar
  7. 7.
    K. N. Houk, J. Sims, C. Watts, and L. Luskus, J. Am. Chem. Soc.,95, 7301 (1973).Google Scholar
  8. 8.
    G. L'Abbe, Chem. Rev.,69, 345 (1969).Google Scholar
  9. 9.
    R. Sustmann, W. Sicking, and H. Quast, Computational Chem.,13, 314 (1992).Google Scholar
  10. 10.
    M. Tsuda, S. Oikawa, and K. Nagayama, Photogr. Sci. and Eng.,27, 118 (1983).Google Scholar
  11. 11.
    S. Gronowitz and P. Zanirato, J. Chem. Soc. Perkin Trans. II, No. 8, 1815 (1994).Google Scholar
  12. 12.
    J. J. P. Stewart, J. Computational Chem.,10, 209 (1989).Google Scholar
  13. 13.
    Spartan version 4.0, Wavefunction, Inc., 18401 Von Karman Ave., #370, Irvine CA 92715 USA (1995).Google Scholar
  14. 14.
    M. W. Schmidt, K. K. Baldrige, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupius, and J. A. Montgomery, J. Computational Chem.,14, 1347 (1993).Google Scholar
  15. 15.
    M. F. Budyka and T. S. Zjubina, Abstracts, International Symposium on Computer Assistance to Chemical Research, Moscow (1996), p. 45.Google Scholar
  16. 16.
    A. Mugnoli, C. Mariani, and M. Simonetta, Acta Cryst.,19, 367 (1965).Google Scholar
  17. 17.
    U. Bergstrasser, Ph. D. Thesis, Kaiserslautern (1992). p. 60.Google Scholar
  18. 18.
    A. S. Bailey, J. J. Merer, and J. E. White, J. Chem. Soc., Chem. Commun., No. 1, 4 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. V. Chapyshev
  • V. M. Anisimov

There are no affiliations available

Personalised recommendations