Chemistry of Heterocyclic Compounds

, Volume 33, Issue 5, pp 551–556 | Cite as

1H NMR spectra of some nitro derivatives of 2-alkylamino-, 2-phenylamino-, 2-piperidyl-, 2-morpholyl-, 2-(N-alkyl-N-nitrosoamino)-, and 2-alkylnitramino-4(or 6)-methylpyridines

  • M. Wandas
  • B. Palasek
  • A. Puszko
  • H. Ban-Oganowska


1H NMR spectra of some N-substituted 2-amino-3-nitro-and 2-amino-5-nitropyridines were measured and interpreted. Chemical shift assignments were based on existing chemical shift rules for substituted pyridines and spectral comparison with compounds of similar structure. The splitting of the methyl group signal of the methylamino group into a doublet testifies that the investigated compounds exist, in the amino form. Someortho-amino- andortho-alkylaminonitropicolines were found to give splitting of the amino signals due to intramolecular hydrogen bonding and steric hindrance.


Methyl Hydrogen Bonding Pyridine Chemical Shift Steric Hindrance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kolehmainen, K. Laiha, and D. D. Rasala, Magn. Reson. Chem.,29, 878 (1991).Google Scholar
  2. 2.
    M. D. Colbum, and J. S. J. Singleton, J. Heterocycl. Chem.,9, 1039 (1992).Google Scholar
  3. 3.
    H. Ritter, Magn Reson. Chem.,31, 364 (1993).Google Scholar
  4. 4.
    W. Kraus, W. Pietrzycki, and P. Tomasik, Chem. Scripta,23, 93 (1984).Google Scholar
  5. 5.
    S. Rubinsztajn and M. Zeldin, Macromolecules.,23, 4026 (1990).Google Scholar
  6. 6.
    S. Rubinsztajn and M. Zeldin, Macromolecules,24, 2682 (1991).Google Scholar
  7. 7.
    A. Deratoni and G. D. Darling, Macromolecules.,24, 767 (1987).Google Scholar
  8. 8.
    E. Delaney, L. E. Wood, and I. M. Klotz, J. Am. Chem. Soc.,104, 1799 (1982).Google Scholar
  9. 9.
    R. L. Robery, Ch. A. Alt, and C. V. De Aminis, US Pat. 5,245,036; Chem. Abstr., 120, 30682 (1994).Google Scholar
  10. 10.
    K. Hagita and T. Hojo, Jpn. Pat. 9,124,096; Chem. Abstr.,115, 71902 (1991).Google Scholar
  11. 11.
    E. Uhlig, E. Unger, and U. Dinjus, Z. Anorg. Allg. Chem.,380, 181 (1971).Google Scholar
  12. 12.
    E. Hofmann and U. Holtschmidt, Ger. Pat. 1,908,072; Chem. Abstr.,74, 22140 (1971).Google Scholar
  13. 13.
    G. V. Kulkami, A. Ray and C. C. Pated, J. Mol. Struct.,71, 253 (1981).Google Scholar
  14. 14.
    M. Edrissi and A. Massouni, Microch. J.,16, 353 (1981).Google Scholar
  15. 15.
    C. Tondre, S. G. Son, and M. Hebrant, Langmuir,9, 950 (1993).Google Scholar
  16. 16.
    D. West and L. Roberts, Inorg. Chim. Acta,90, 79 (1984).Google Scholar
  17. 17.
    D. West and H. M. Nowak, J. Inorg. Nucl. Chem.,43, 2719 (1981).Google Scholar
  18. 18.
    D. West and T. J. O'Grady, J. Inorg. Nucl. Chem.,43, 42725 (1981).Google Scholar
  19. 19.
    B. Palasek and T. Talik, Pr. Nauk. AE, Wroclaw,291, 111 (1985).Google Scholar
  20. 20.
    P. Palasek and Z. Talik, Pr. Nauk. AE, Wroclaw,435, 119 (1988).Google Scholar
  21. 21.
    M. Pupin and T. Talik, Pr. Nauk. AE, Wroclaw,291 90 (1985).Google Scholar
  22. 22.
    M. Wandas and T. Talik, Pr. Nauk. AE, Wroclaw,435, 129 (1988).Google Scholar
  23. 23.
    H. Ban-Oganowska, R. Palasek, and M. Wandas, Khim. Geterotsikl. Soeden., No. 5, 632 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. Wandas
  • B. Palasek
  • A. Puszko
  • H. Ban-Oganowska

There are no affiliations available

Personalised recommendations