Representation of structure in similarity data: Problems and prospects

Conclusion

After struggling with the problem of representing structure in similarity data for over 20 years, I find that a number of challenging problems still remain to be overcome—even in the simplest case of the analysis of a single symmetric matrix of similarity estimates. At the same time, I am more optimistic than ever that efforts directed toward surmounting the remaining difficulties will reap both methodological and substantive benefits. The methodological benefits that I forsee include both an improved efficiency and a deeper understanding of “discovery” methods of data analysis. And the substantive benefits should follow, through the greater leverage that such methods will provide for the study of complex empirical phenomena—perhaps particularly those characteristic of the human mind.

This is a preview of subscription content, access via your institution.

References

  1. Abelson, R. P., and Tukey, J. W. Efficient conversion of nonmetric information into metric information.Proceedings of the American Statistical Association Meetings, Social Statistics Section, 1959, 226–230.

  2. Anderson, J. R., and Bower, G. H. Human associative memory. Washington, D. C.: V. H. Winston & Sons, 1973.

    Google Scholar 

  3. Arabie, P. Concerning Monte Carlo evaluations of nonmetric multidimensional scaling algorithms.Psychometrika, 1973,38, 607–608.

    Google Scholar 

  4. Arabie, P. and Boorman, S. A. Multidimensional scaling of measures of distance between partitions.Journal of Mathematical Psychology, 1973,10, 148–203.

    Google Scholar 

  5. Arabie, P. and Shepard, R. N. Representation of similarities as additive combinations of discrete overlapping properties. Presented at the Mathematical Psychology Meeting in Montreal, August, 1973.

  6. Arnold, J. B. A multidimensional scaling study of semantic distance.Journal of Experimental Psychology Monograph, 1971,90, 349–372.

    Google Scholar 

  7. Attneave, F. Dimensions of similarity.American Journal of Psychology, 1950,63, 516–556.

    Google Scholar 

  8. Beals, R., Krantz, D. H., and Tversky, A. Foundations of multidimensional scaling.Psychological Review, 1968,75, 127–142.

    PubMed  Google Scholar 

  9. Bennett, R. S. The intrinsic dimensionality of signal collections. Doctoral dissertation, The Johns Hopkins University, 1965. University Microfilms, Inc., Ann Arbor, Michigan.

  10. Bennett, R. S. The intrinsic dimensionality of signal collections.IEEE Transactions on Information Theory, 1969, Vol. IT-15, No. 5, 517–525.

    Google Scholar 

  11. Blank, A. A. Axiomatics of binocular vision: The foundations of metric geometry in relation to space perception.Journal of the Optical Society of America, 1958,48, 328–334.

    PubMed  Google Scholar 

  12. Blank, A. A. The Luneburg theory of binocular space perception. In S. Koch (Ed.),Psychology: A study of a science. New York: McGraw-Hill, 1959. Pp. 395–426.

    Google Scholar 

  13. Blumenthal, L. M.Theory and applications of distance geometry. Oxford: Clarendon Press, 1953.

    Google Scholar 

  14. Boyd, J. P. Information distance for discrete structures. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 213–223.

    Google Scholar 

  15. Busemann, H.The geometry of geodesics. New York: Academic Press, 1955.

    Google Scholar 

  16. Carroll, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. (a) Pp. 105–155.

    Google Scholar 

  17. Carroll, J. D. Algorithms for rotation and interpretation of dimensions and for configuration matching. Bell Telephone Laboratories, 1972. (b) (Multilithed handout prepared for the workshop on multidimensional scaling, held at the University of Pennsylvania in June, 1972.)

  18. Carroll, J. D., and Chang, J.-J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 283–319.

    Google Scholar 

  19. Chang, J.-J., and Shepard, R. N. Exponential fitting in the proximity analysis of confusion matrices. Presented at the annual meeting of the Eastern Psychological Association, New York, April 14, 1966.

  20. Clark, H. H. Linguistic processes in deductive reasoning.Psychological Review, 1969,76, 387–404.

    Google Scholar 

  21. Clark, H. H. Word associations and linguistic theory. In J. Lyons (Ed.),New horizons in linguistics. Baltimore, Maryland: Penguin Books, 1970. Pp. 271–286.

    Google Scholar 

  22. Coombs, C.A theory of data. New York: Wiley, 1964.

    Google Scholar 

  23. Cross, D. V. Metric properties of multidimensional stimulus generalization. In D. I. Mostofsky (Ed.),Stimulus generalization. Stanford, Calif.: Stanford University Press, 1965. Pp. 72–93.

    Google Scholar 

  24. Cunningham, J. P. On finding an optimal tree realization of a proximity matrix. Presented at the mathematical psychology meeting, Ann Arbor, Michigan, August 29, 1974.

  25. Cunningham, J. P., and Shepard, R. N. Monotone mapping of similarities into a general metric space.Journal of Mathematical Psychology, 1974,11, (in press).

  26. Degerman, R. L. Multidimensional analysis of complex structure: Mixtures of class and quantitative variation.Psychometrika, 1970,35, 475–491.

    Google Scholar 

  27. Ekman, G. Dimensions of color vision.Journal of Psychology, 1954,38, 467–474.

    Google Scholar 

  28. Fillenbaum, S., and Rapoport, A.Structures in the subjective lexicon, New York: Academic Press, 1971.

    Google Scholar 

  29. Foley, J. M. The size-distance relation and the intrinsic geometry of visual space.Vision Research, 1972,12, 323–332.

    PubMed  Google Scholar 

  30. Greenberg, J. H.Language universals. The Hague: Mouton, 1966.

    Google Scholar 

  31. Guttman, L. A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.),Mathematical thinking in the social sciences. Glencoe, Illinois: Free Press, 1954. Pp. 258–348.

    Google Scholar 

  32. Guttman, L. A generalized simplex for factor analysis.Psychometrika, 1955,20, 173–192.

    Google Scholar 

  33. Guttman, N., and Kalish, H. I. Discriminability and stimulus generalization.Journal of Experimental Psychology, 1956,51, 79–88.

    PubMed  Google Scholar 

  34. Halle, M. On the bases of phonology. In J. A. Fodor and J. J. Katz (Eds.),The structure of language. Englewood Cliffs, N. J.: Prentice-Hall, 1964. Pp. 324–333.

    Google Scholar 

  35. Harshman, R. A. Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis. Unpublished doctoral dissertation, University of California at Los Angeles, 1970.

  36. Haviland, S. E., and Clark, E. V. ‘This man's father is my father's son’: A study of the acquisition of English kin terms.Journal of Child Language, 1974,1, 23–47.

    Google Scholar 

  37. Helm, C. E. Multidimensional ratio scaling analysis of perceived color relations.Journal of the Optical Society of America, 1964,54, 256–262.

    PubMed  Google Scholar 

  38. Hyman, R., and Well, A. Judgments of similarity and spatial models.Perception and Psychophysics, 1967,2, 233–248.

    Google Scholar 

  39. Hyman, R., and Well, A. Perceptual separability and spatial models.Perception and Psychophysics, 1968,3, 161–165.

    Google Scholar 

  40. Indow, T. Applications of multidimensional scaling in perception. In E. C. Carterette and M. P. Friedman (Eds.),Handbook of perception, Vol. 2. New York: Academic Press, in press.

  41. Jardine, N., and Sibson, R.Mathematical taxonomy. New York: Wiley, 1971.

    Google Scholar 

  42. Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254.

    PubMed  Google Scholar 

  43. Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedure.Psychometrika, 1969,34, 319–330.

    Google Scholar 

  44. Koopman, R. F., and Cooper, M. Some problems with Minkowski distance models in multidimensional scaling. Presented at the annual meeting of the Psychometric Society, Stanford University, March 28, 1974.

  45. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. (a)

    Google Scholar 

  46. Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 28–42. (b)

    Google Scholar 

  47. Kruskal, J. B. Linear transformation of multivariate data to reveal clustering. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. Vol I. New York: Seminar Press, 1972. Pp. 179–191.

    Google Scholar 

  48. Kruskal, J. B. Multidimensional scaling and other methods for discovering structure. In A. J. Ralston, H. S. Wilf, and K. Enslein, (Eds.),Statistical methods for digital computers. New York: Wiley, in press.

  49. Levelt, W. J. M., Van de Geer, J. P., and Plomp, R. Triadic comparisons of musical intervals.British Journal of Mathematical and Statistical Psychology, 1966,19, 163–179.

    Google Scholar 

  50. Lévi-Strauss, C.The savage mind. Chicago: University of Chicago Press, 1967.

    Google Scholar 

  51. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., and Studdert-Kennedy, M. Perception of the speech code.Psychological Review, 1967,74, 431–461.

    PubMed  Google Scholar 

  52. Lingoes, J. C. A general survey of the Guttman-Lingoes nonmetric program series. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. Vol. I. New York: Seminar Press, 1972.

    Google Scholar 

  53. Luneburg, R. K.Mathematical analysis of binocular vision. Princeton, N. J.: Princeton University Press, 1947.

    Google Scholar 

  54. Luneburg, R. K. The metric of binocular visual space.Journal of Optical Society of America, 1950,40, 637–642.

    Google Scholar 

  55. Miller, G., and Nicely, P. E. An analysis of perceptual confusions among some English consonants.Journal of the Acoustical Society of America, 1955,27, 338–352.

    Google Scholar 

  56. Osgood, C. E., Suci, G. J., and Tannenbaum, P. H.The measurement of meaning. Urbana, Ill.: University of Illinois Press, 1957.

    Google Scholar 

  57. Peters, R. W. Dimensions of perception of consonants.Journal of the Acoustical Society of America, 1963,35, 1985–1989.

    Google Scholar 

  58. Quillian, M. R. Semantic memory. In M. Minsky (Ed.),Semantic information processing. Cambridge, Mass.: M.I.T. Press, 1968.

    Google Scholar 

  59. Rips, L. J., Shoben, E. J., and Smith, E. E. Semantic distance and the verification of semantic relations.Journal of Verbal Learning and Verbal Behavior, 1973,12, 1–20.

    Google Scholar 

  60. Romney, A. K., and D'Andrade, R. G. Cognitive aspects of English kinship terms.American Anthropologist, 1964,66, 146–170.

    Google Scholar 

  61. Rumelhart, D. E., and Abrahamson, A. A. A model for analogical reasoning.Cognitive Psychology, 1973,5, 1–28.

    Google Scholar 

  62. Rumelhart, D. E., Lindsay, P. H., and Norman, D. A. A process model for long-term memory. In E. Tulving and W. Donaldson (Eds.),Organization of memory. New York: Academic Press, 1972.

    Google Scholar 

  63. Rund, H.The differential geometry of Finsler space. Berlin: Springer-Verlag, 1959.

    Google Scholar 

  64. Shepard, R. N. Multidimensional scaling of concepts based upon sequences of restricted associative responses.American Psychologist, 1957,12, 440–441. (abstract) (a)

    Google Scholar 

  65. Shepard, R. N. Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space.Psychometrika, 1957,22, 325–345. (b)

    Google Scholar 

  66. Shepard, R. N. Stimulus and response generalization: Deduction of the generalization gradient from a trace model.Psychological Review, 1958,65, 242–256. (a)

    PubMed  Google Scholar 

  67. Shepard, R. N. Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space.Journal of Experimental Psychology, 1958,55, 509–523. (b)

    PubMed  Google Scholar 

  68. Shepard, R. N. Similarity of stimuli and metric properties of behavioral data. In H. Gulliksen and S. Messick (Eds.),Psychological scaling: Theory and applications. New York: Wiley, 1960. Pp. 33–43.

    Google Scholar 

  69. Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 1962,27, 125–140. (a)

    Google Scholar 

  70. Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 1962,27, 219–246. (b)

    Google Scholar 

  71. Shepard, R. N. Analysis of proximities as a technique for the study of information processing in man.Human Factors, 1963,5, 33–48. (a)

    PubMed  Google Scholar 

  72. Shepard, R. N. Comments on Professor Underwood's paper “Stimulus selection in verbal learning.” In C. N. Cofer and B. S. Musgrave (Eds.),Verbal behavior and learning: Problems and processes. New York: McGraw-Hill, 1963. Pp. 48–70. (b)

    Google Scholar 

  73. Shepard, R. N. Attention and the metric structure of the stimulus space.Journal of Mathematical Psychology, 1964,1, 54–87. (a)

    Google Scholar 

  74. Shepard, R. N. Polynomial fitting in the analysis of proximities.Proceedings of the XVIIth international congress of psychology. Amsterdam: North-Holland Publisher, 1964, 345–346. (abstract) (b)

    Google Scholar 

  75. Shepard, R. N. Approximation to uniform gradients of generalization by monotone transformations of scale. In D. I. Mostofsky (Ed.),Stimulus Generalization. Stanford, Calif.: Stanford University Press, 1965. Pp. 94–110.

    Google Scholar 

  76. Shepard, R. N. Computer explorations of psychological space. Invited research address presented at the annual meeting of the American Psychological Association, New York, September 3, 1966. (a)

  77. Shepard, R. N. Metric structures in ordinal data.Journal of Mathematical Psychology, 1966,3, 287–315. (b)

    Google Scholar 

  78. Shepard, R. N. Continuity versus the triangle inequality as a central principle for the spatial analysis of similarity data. Presented in a symposium on alternative models for the geometric representation of psychological data, at the mathematical psychology meetings, Stanford University, August 28, 1968.

  79. Shepard, R. N. Introduction to Volume I. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 1–20. (a)

    Google Scholar 

  80. Shepard, R. N. A taxonomy of some principal types of data and of multidimensional methods for their analysis. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 21–47. (b)

    Google Scholar 

  81. Shepard, R. N. Psychological representation of speech sounds. In E. E. David & P. B. Denes (Eds.),Human communication: A unified view. New York: McGraw-Hill, 1972. Pp. 67–113. (c)

    Google Scholar 

  82. Shepard, R. N., and Carroll, J. D. Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.),Multivariate analysis: Proceedings of an international symposium. New York: Academic Press, 1966. Pp. 561–592.

    Google Scholar 

  83. Shepard, R. N., and Cermak, G. W. Perceptual-cognitive explorations of a toroidal set of free-form stimuli.Cognitive Psychology, 1973,4, 351–377.

    Google Scholar 

  84. Shepard, R. N., Hovland, C. I. and Jenkins, H. M. Learning and memorization of classifications.Psychological Monographs, 1961,75, (13, whole no. 517).

  85. Shepard, R. N., Kilpatric, D. W., and Cunningham, J. P. The internal representation of numbers.Cognitive Psychology, in press.

  86. Silberstein, L. Investigations of the intrinsic properties of the color domain.Journal of the Optical Society of America, 1938,28, 63–85.

    Google Scholar 

  87. Silberstein, L., and MacAdam, D. L. The distribution of color matchings around a color center.Journal of the Optical Society of America, 1945,35, 32–39.

    Google Scholar 

  88. Sokal, R. R., and Sneath, P. H. A.Principles of numerical taxonomy. San Francisco: W. H. Freeman, 1963.

    Google Scholar 

  89. Stenson, H. H., and Knoll, R. L. Goodness of fit for random rankings in Kruskal's nonmetric scaling procedure.Psychological Bulletin, 1969,71, 122–126.

    Google Scholar 

  90. Thomas, H. Spatial models and multidimensional scaling of random shapes.American Journal of Psychology, 1968,81, 551–558.

    Google Scholar 

  91. Torgerson, W. S. Multidimensional scaling: I. theory and method.Psychometrika, 1952,17, 401–419.

    Google Scholar 

  92. Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.

    Google Scholar 

  93. Torgerson, W. S. Multidimensional scaling of similarity.Psychometrika, 1965,30, 379–393.

    PubMed  Google Scholar 

  94. Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis.Psychometrika, 1972,37, 3–27.

    Google Scholar 

  95. Wish, M., and Carroll, J. D. Applications of “INDSCAL” to studies of human perception and judgment. In E. C. Carterette and M. P. Friedman (Eds.),Handbook of perception, Vol. 2. New York: Academic Press, in press.

  96. Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information.Psychometrika, 1970,35, 455–473.

    Google Scholar 

  97. Young, F. W., and Torgerson, W. S. TORSCA, A FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis.Behavioral Science, 1967,12, 498.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Presidential address delivered before the annual meeting of the Psychometric Society at Stanford University on March 28, 1974 (in a somewhat revised form necessarily, for purposes of publication, with more words and fewer pictures). Much of the work surveyed in this paper was supported by the Bell Telephone Laboratories, during my eight years as a member of the technical staff there, and by grants (principally, GS-1302, GS-2283, and GB-31971X) from the National Science Foundation, during my subsequent eight years at Harvard and at Stanford. I wish to acknowledge, too, the important contributions to this work made by my many students and associates during these 16 years including, particularly, Doug Carroll, Jih-Jie Chang, Steve Johnson, and Joe Kruskal (at the Bell Laboratories) and Phipps Arabie, Glen Crawford, and Jim Cunningham (at Stanford). Finally, I am indebted to Sherry Huntsberger for suggestions and extensive help in connection with the preparation of the paper itself, and to Bert Green for useful editorial comments.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shepard, R.N. Representation of structure in similarity data: Problems and prospects. Psychometrika 39, 373–421 (1974). https://doi.org/10.1007/BF02291665

Download citation

Keywords

  • Data Analysis
  • Public Policy
  • Statistical Theory
  • Deep Understanding
  • Similarity Data