Skip to main content
Log in

Synthesis of racemic 1,2,3,4-tetrahydroisoquinolines and their resolution

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

1-Aniline-substituted 3,4-dihydroisoquinolines were obtained in various ways using the Bischler-Napieralski reaction. The effect of the protecting group at the aniline nitrogen atom on the course of the reaction has been studied and it was found that the N-phthalyl group was stable under the cyclization conditions. The dihydroisoquinolines were reduced to the racemic 1,2,3,4-tetrahydroisoquinolines which were resolved by crystallization of the diastereomeric tartrates. Two examples of 1,2,3,4-tetrahydroisoquinolines were obtained in optically pure form (>99%ee).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Razwadowska,Heterocycles,39, 903 (1944).

    Google Scholar 

  2. H. Ott, G. E. Hardtmann, M. Denzer, A. J. Frey, J. H. Gogerty, G. H. Leslie, and J. H. Trapold,J. Med. Chem.,11, 777 (1968).

    Article  PubMed  Google Scholar 

  3. K. T. Wanner, H. Beer, G. Höfner, and M. Ludwig,Eur. J. Org. Chem., No. 9, 2019 (1998).

    Article  Google Scholar 

  4. E. Vedejs, N. Lee, and T. Sakata,J. Am. Chem. Soc.,116, 2175 (1994).

    Article  Google Scholar 

  5. E. Vedejs, A. W. Kruger, and E. Suna,J. Org. Chem.,64, 783 (1999).

    Google Scholar 

  6. E. Vedejs and A. W. Kruger,J. Org. Chem.,63, 2792 (1998).

    Article  Google Scholar 

  7. D. Barbier, C. Marazano, C. Riche, B. C. Das, and P. Potier,J. Org. Chem.,63, 1767 (1998).

    Article  Google Scholar 

  8. B. Wünsch and S. Nerdinger,Eur. J. Org. Chem., No. 2, 513 (1999).

    Google Scholar 

  9. S. Doi, N. Shirai, Y. Sato,J. Chem. Soc., Perkin Trans. I, No. 15, 2217 (1997).

    Google Scholar 

  10. L. Carrillo, D. Badia, E. Dominguez, F. Ortega, and I. Tellitu,Tetrahedron: Asymmetry,9, 151 (1998).

    Article  Google Scholar 

  11. S. Nagubandi and G. Fodor,J. Heterocycl. Chem.,17, 1457 (1980).

    Google Scholar 

  12. G. Fodor and S. Nagubandi,Tetrahedron,36, 1279 (1980).

    Article  Google Scholar 

  13. T. Sasaki, K. Minamato, and H. Itoh,J. Org. Chem.,43, 2320 (1978).

    Article  Google Scholar 

  14. E. T. McBee and R. A. Sanford,J. Am. Chem. Soc.,72, 1651 (1950).

    Article  Google Scholar 

  15. N. A. Al-Jabar and A. G. Massey,J. Organomet. Chem.,288, 145 (1985).

    Article  Google Scholar 

  16. D. B. Collum,Acc. Chem. Res.,25, 448 (1992).

    Article  Google Scholar 

  17. C. Lee and L. Field,Synthesis, No. 5, 391 (1990).

    Article  Google Scholar 

  18. E. Vedejs, P. Trapencieris, and E. Suna,J. Org. Chem.,64, 6724 (1999).

    Article  PubMed  Google Scholar 

  19. G. W. Gribble and P. W. Heald,Synthesis, No. 10, 650 (1975).

    Article  Google Scholar 

  20. P. Newman,Optical Resolution Procedures for Chemical Compounds. Amines and Related Compounds. Riverdale, New York, 1984.

  21. H. Ott, US Pat 3297696;Chem. Abstr.,66, 65505 (1967).

    Google Scholar 

  22. B. Love,Can. J. Chem.,42, 1488 (1964).

    Google Scholar 

  23. G. Palazzo and B. Silvestrini, US Pat 3409668;Chem. Abstr.,70, 37496 (1969).

    Google Scholar 

Download references

Authors

Additional information

Dedicated to Professor M. A. Yurovskaya on her jubilee.

Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia. email: peteris@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 348–361, March, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suna, E., Trapencieris, P. Synthesis of racemic 1,2,3,4-tetrahydroisoquinolines and their resolution. Chem Heterocycl Compd 36, 287–300 (2000). https://doi.org/10.1007/BF02256866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256866

Keywords

Navigation