Chemistry of Heterocyclic Compounds

, Volume 35, Issue 1, pp 106–111 | Cite as

Nucleophilic substitution in the 10,11-dihydrodibenz[b,f]iodepinium cation

  • T. P. Tolstaya
  • L. I. Sukhomlinova
  • A. N. Vanchikov
  • N. A. Bumagin


10,11-Dihydrodibenz[b,f]iodepinium tetrafluoroborate gave only 1-(2-azidophenyl)-2-(2-iodophenylethane with the N3 in aqueous DMSO, while with NO2 it gave 1-(2-nitrophenyl)-2-(2-iodophenyl)ethane (93%), 9,10-dihydrophenanthrene (5%), and traces of phenanthrene. Both in pure and aqueous DMSO this cation with the Br ion was converted into phenanthrene (80% and 68% respectively) and 1-(2-bromophenyl)-2-(2-iodophenyl)ethane (10 and 20%), while in water it gave 9,10-dihydrophenanthrene (75%) and phenanthrene (5%). A new route for the synthesis of 1-(2-aminophenyl)-2-phenylethane starting from this tetrafluoroborate has been proposed.


DMSO Organic Chemistry Ethane Phenanthrene Nucleophilic Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Vanchikov, M. S. Bobyleva, E. E. Komissarova, N. S. Kulikov, and T. P. Tolstaya, Khim. Geterotsikl. Soedin., No. 3, 405 (1998).Google Scholar
  2. 2.
    V. A. Bydilin, M. S. Ermolenko, F. A. Chugtai, and A. N. Kost, Khim. Geterotsikl. Soedin., No. 11, 1494 (1981).Google Scholar
  3. 3.
    R. Hoffman, J. M. Howell, and E. L. Muetterties, J. Am. Chem. Soc.,94, 3047 (1972).Google Scholar
  4. 4.
    C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Lau, A. Alegria, and J. K. Kochi, J. Am. Chem. Soc.,102, 7753 (1980).Google Scholar
  5. 5.
    D. D. Tanner, D. W. Reed, and B. P. Setiloane, J. Am. Chem. Soc.,104, 3917 (1982).Google Scholar
  6. 6.
    J. Collette, D. McGreer, R. Crawford, F. Chubb, and R. B. Sandin, J. Am. Chem. Soc.78, 3819 (1956).Google Scholar
  7. 7.
    D. N. Kursanov and A. S. Kichkina, Zh. Obshch. Khim.,5, 1342 (1935).Google Scholar
  8. 8.
    N. A. Bumagin, L. I. Sukhomlinova, T. P. Tolstaya, and I. P. Beletskaya, Dokl. Akad. Nauk SSSR.,332, 454 (1993).Google Scholar
  9. 9.
    B. E. Legetter and R. K. Brown, Can. J. Chem.,38, 2363 (1960).Google Scholar
  10. 10.
    E. E. van Tamelen, R. S. Dewey, M. F. Lease, and W. H. Pirkle, J. Amer. Chem. Soc.,83, 4302 (1961).Google Scholar
  11. 11.
    A. N. Nesmeyanov, T. P. Tolstaya, A. V. Petrakov, I. I. Fedotova, and M. U. Arinbasarov, Dokl. Akad. Nauk SSSR.,218, 855 (1974).Google Scholar
  12. 12.
    A. N. Nesmeyanov, T. P. Tolstaya, L. N. Vanchikova, and A. V. Petrakov, Izv. Akad. Nauk SSSR, Ser. Khim., 2530 (1980).Google Scholar
  13. 13.
    H. Meerwein, E. Büchner, and K. van Emster, J. Prakt. Chem.,152, 237 (1939).Google Scholar
  14. 14.
    P. Ruggli and A. Staub, Helv. Chim. Acta,20, 37 (1937).Google Scholar

Copyright information

© Kluwer Academic/Plenum 1999

Authors and Affiliations

  • T. P. Tolstaya
  • L. I. Sukhomlinova
  • A. N. Vanchikov
  • N. A. Bumagin

There are no affiliations available

Personalised recommendations