Review: Borders, patterns, and distinctive families of homeodomains

  • Viktor Gindilis
  • Maryam Banikazemi
  • Andrey Vyasankin
  • Oleg Verlinsky
  • Ivan Matveyev
  • Yury Verlinsky



Homeotic proteins function as transcription factors in early embryogenesis of many organisms. To date, hundreds of distinctive homeoproteins have been identified, including 84 human homeodomains. However further progress in understanding functional relationships between particular homeoproteins and other embryonic regulators requires a comprehensive structural classification of these proteins.


The most probable borders and conservative amino acid positions inside the homeodomain region have been established using a statistical analysis of variabilities of amino acid occurrences at various positions outside and inside the domain. A new format for a homeodomain sequence presentation and regular amino acid patterns which are strongly representative of distinctive homeodomain groups are proposed. Using the established patterns, 33 families of closely related homeodomains have been distinguished and classified. The total list of 297 homeodomain amino acid sequences is presented in the Appendix.


The structural classification of homeodomains has been proposed. It can be useful for both the identification (or prediction) of new homeotic genes/ proteins and the recognition of possible PCR-induced sequence errors. This systematics will also have an impact on understanding functional relationships among homeotic proteins and other genetic regulators of developmental processes.

Key words

homeobox-containing genes homeodomaincontaining transcription factors isofunctional amino acid grouping homeodomain patterns homeoprotein classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scott MP, Tamkun JW, Hartzell GW: The structure and function of the homeodomain. Biochim Biophys Acta 1989;989:25–48PubMedGoogle Scholar
  2. 2.
    Kappen C, Schughart K, Ruddle FH: Early evolutionary origin of major homeodomain sequence classes. Genomics 1993;18:54–70CrossRefPubMedGoogle Scholar
  3. 3.
    Verlinsky Y, Morozov G, Gindilis VM, Freidin M, Rechitsky S, Verlinsky O, Ivahnenko V, Zdonofsky V, Kuliev A, Strom CM: Homeobox gene expression in human oocytes and preembryos. Mol Reprod Dev 1994 (in press)Google Scholar
  4. 4.
    Schubert FR, Nieselt-Struwe K, Gruss P: The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution. Proc Natl Acad Sci USA 1993;90:143–147PubMedGoogle Scholar
  5. 5.
    Webster PJ, Mansour TE: Conserved classes of homeodomains in Schistosoma mansoni, an early bilateral metazoan. Mech Dev 1992;38:25–32CrossRefPubMedGoogle Scholar
  6. 6.
    Murtha MT, Leckman JF, Ruddle FH: Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 1991;88:10711–10715PubMedGoogle Scholar
  7. 7.
    Bartels JL, Murtha MT, Ruddle FH: Multiple Hox/HOM-class homeoboxes in Platyhelminthes. Mol Phylogenet Evol 1993;143–151Google Scholar
  8. 8.
    Ratner V, Jarkich A, Kolchanov N:In Problems of the Molecular Evolution Theory. Novosibirsk, Nauka, 1985, pp 63–74 (in Russian)Google Scholar
  9. 9.
    Taylor WR: The classification of amino acid conservation. J Theoret Biol 1986;119:205–218Google Scholar
  10. 10.
    Statistica/W: StatSoft (TM), 1994, Vol II, pp 3155–3184Google Scholar
  11. 11.
    Holland PW: Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Gene 1991;98:253–257CrossRefPubMedGoogle Scholar
  12. 12.
    Feng JA, Johnson RC, Dickerson RE: Hin recombinase bound to DNA: The origin of specificity in major and minor groove interactions. Science 1994;263:348–355PubMedGoogle Scholar
  13. 13.
    Pabo CO, Sauer RT: Transcriptional factors: Structural families and principles of DNA recognition. Annu Rev Biochem 1992;61:1053–1095CrossRefPubMedGoogle Scholar
  14. 14.
    Gindilis VM, Banikazemi M, Vyasankin A, Verlinsky O, Verlinsky Yu: Toward an evolutionary systematics of homeoproteins (manuscript in preparation), 1994Google Scholar
  15. 15.
    Gindilis V, Morozov G, Rechitsky S, Banikazemi M, Verlinsky O, Freidin M, Dyban A, Kuliev A, Strom C, Verlinsky Yu: PCR cloning of the human homeobox-containing cognate of the Drosophila “caudal” gene (manuscript in preparation), 1994)Google Scholar
  16. 16.
    James R, Kazenwadel J: Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem 1991;266:3246–3251PubMedGoogle Scholar
  17. 17.
    Stornaiuolo A, Acampora D, Pannese M, D'Esposito M, Morelli F, Migliaccio E, Rambaldi M, Faiello A, Nigro V, Simeone A, Boncinelli E: Human HOX genes are differentially activated by retinoic acid in embryonal carcinoma cells. Cell Different Dev 1990;31:119–127CrossRefGoogle Scholar
  18. 18.
    Bartels J, Murtha M, Ruddle FH: Multiple Hox/HOM-class homeoboxes in Platyhelminthes. Mol Phylogenet Evol 1993;2:143–151CrossRefPubMedGoogle Scholar
  19. 19.
    Simeone A, Acampora D, Nigro V, Faiella A, D'Esposito M, Stornaiuolo A, Mavilio F, Boncinelli E: Differential regulation by retinoic acid of the homeobox genes. Mech Dev 1991;33:215–228CrossRefPubMedGoogle Scholar
  20. 20.
    Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP: Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells. Development 1993;119:419–431PubMedGoogle Scholar
  21. 21.
    Price M, Lazzaro D, Pohl T, Mattei MG, Ruther U, Olivo JC, Duboule D, DiLauro R: Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 1992;8:241–255CrossRefPubMedGoogle Scholar
  22. 22.
    Robinson GW, Wray S, Mahon KA: Spatially restricted expression of a member of a new family of murine distalless homeobox genes. New Biol 1991;3:1183–1194PubMedGoogle Scholar
  23. 23.
    Simeone A, Acampora D, Pannese M, D'Esposito M, Stornaiuolo A, Gulisano M, Mallamaci A, Kastury K, Druck T, Boncinelli E: Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci USA 1994;91:2250–2254PubMedGoogle Scholar
  24. 24.
    Dalton D, Chadwick R, McGinnis W: Expression and embryonic function of empty spiracles. Gene Dev 1989;3:1940–1956PubMedGoogle Scholar
  25. 25.
    Desplan C, Goriely A, Benhamed S, Coffinier C, Kessler D, Dessain S, McGinnis B, Stella M: Goosecoid in Drosophila. 35th Annual Drosophila Research Conference, 1994, p 23Google Scholar
  26. 26.
    Walldorf U, Fleig R, Gehring WJ: Comparison of homeoboxcontaining genes of the honeybee and Drosophila. Proc Natl Acad Sci USA 1989;86:9971–9975PubMedGoogle Scholar
  27. 27.
    Martin P, Carriere C, Dozier C, Quatannens B, Mirabel MA, Vandenbunder B, Stehelin D, Saule S: Characterization of a paired box- and homeobox-containing quail gene (Pax-QNR) expressed in the neuroretina. Oncogene 1992;7:1721–1728PubMedGoogle Scholar
  28. 28.
    Jostes B, Walther C, Gruss P: The murine Paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 1991;33:27–38CrossRefGoogle Scholar
  29. 29.
    Theil T, Zechner U, Klett C, Adolph S, Moroy T: Chromosomal localization and sequences of the murine Brn-3 family of developmental control genes. Cytogenet Cell Genet 1994;66:267–271PubMedGoogle Scholar
  30. 30.
    Blum M, De Robertis EM, Kojis T, Heinzmann C, Klisak I, Geissen D, Sparkes RS: Molecular cloning of the human homeobox gene Goosecoid (GSC) and mapping of the gene to human chromosome 14q32.1. Genomics 1994;21:388–393CrossRefPubMedGoogle Scholar
  31. 31.
    Li H, Witte DP, Brandford WW, Aronow BJ, Weinstein M, Kaur S, Wert S, Gurpakash S, Schreiner CM, Whitsett JA, Scott WJ, Potter SS: Gsh-4 encodes a Lim-type homeodomain, is expressed in the developing central nervous system and is required for early postnatal survival. EMBO J 1994;13:2876–2885PubMedGoogle Scholar
  32. 32.
    Wang M, Drucker DJ: The LIM domain homeobox gene isl-1. Endocrinology 1994;134:1416–1422CrossRefPubMedGoogle Scholar
  33. 33.
    Bober E, Baum C, Braun T, Arnold HH: A novel NK-related mouse homeobox gene. Dev Biol 1994;162:288–303CrossRefPubMedGoogle Scholar
  34. 34.
    Kalionis B, O'Farrell PH: A universal target sequence is bound in vitro by diverse homeodomains. Mech Dev 1993;63:57–70CrossRefGoogle Scholar
  35. 35.
    Kamb A, Weir M, Rudy B, Varmus H, Kenyon C: Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification. Proc Natl Acad Sci USA 1989;86:4372–4376PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Viktor Gindilis
    • 1
  • Maryam Banikazemi
    • 1
  • Andrey Vyasankin
    • 1
  • Oleg Verlinsky
    • 1
  • Ivan Matveyev
    • 2
  • Yury Verlinsky
    • 1
  1. 1.Illinois Masonic Medical CenterReproductive Genetics InstituteChicago
  2. 2.Biology DepartmentSt. Petersburg UniversitySt. PetersburgRussia

Personalised recommendations