Skip to main content
Log in

Rectal administration of nicomorphine in patients improves biological availability of morphine and its glucuronide conjugates

  • Articles
  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

The pharmacokinetics of 30 mg nicomorphine after rectal administration with a suppository are described in 8 patients under combined general and epidural anaesthesia. No nicomorphine or 6-mononicotinoylmorphine could be detected in the serum. Morphine appeared almost instantaneously with a lag-time of 8 min and had a final elimination half-life of 1.48±0.48 h. Morphine was metabolized to morphine-3-glucuronide and morphine-6-glucuronide. These glucuronide conjugates appeared after a lag-time of 12 min and the half-life of these two glucuronide conjugates was similar: about 2.8 h (P>0.8). The glucuronide conjugate of 6-mononicotinoylmorphine was not detected. In the urine only morphine and its glucuronides were found. The renal clearance value for morphine was 162 m·min−1 and for the glucuronides 81 ml·min−1. This study shows that administration of a suppository with 30 mg nicomorphine gives an excellent absolute bioavailability of morphine and its metabolites of 88%. The lipid-soluble prodrug nicomorphine is quickly absorbed and immediately hydrolysed to morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirksen R, Van de Pol F, Nijhuis GMM. Mechanisms of effectiveness of intravenous nicomorphine and its hydrolysis products in rats. In: Kopera H, Booy LHDJ, editors. Proceedings of the Vilan® workshop; Graz 1987; 1988:10–6.

  2. Pinckaers JWM, Nijhuis GMM, Dirksen R. Postoperative nicomorphine analgesia by spinal or epidural application. Anesth Intensivmed 1982;152:16–24.

    Google Scholar 

  3. Koopman-Kimenai PM, Vree TB, Cress-Tijhuis MW, Booij LHDJ, Drijkoningen G. High performance liquid chromatography and preliminary pharmacokinetics of nicomorfine and its metabolites 3-nicotinoyl- and 6-nicotinoylmorfine and morfine. J Chromatogr 1987;416:382–7.

    PubMed  Google Scholar 

  4. Proost JH, Meijer DKF. MW/PHARM, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med 1992;22:155–63.

    PubMed  Google Scholar 

  5. Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R, Nijhuis GMM. Pharmacokinetics of intramuscular nicomorphine and its metabolites in man. Eur J Clin Pharmacol 1991;41:375–8.

    PubMed  Google Scholar 

  6. Koopman-Kimenai PM, Vree TB, Hasenbos MAWM, Weber EWG, Verweij-van Wissen CPWGM, Booij LHDJ. Pharmacokinetics of nicomorphine and its metabolites in man after epidural administration. Pharm Weekbl Sci 1991;13:142–7.

    PubMed  Google Scholar 

  7. Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R, Nijhuis GMM. Pharmacokinetics of intravenously administered nicomorphine and its metabolites in man. Eur J Anaesthesiol 1993;10:125–32.

    PubMed  Google Scholar 

  8. Garrett ER, Gürkan T. Pharmacokinetics of morphine and its surrogates I: comparisons of sensitive assays of morphine in biological fluids and application of morphine pharmacokinetics in the dog. J Pharm Sci 1978;67:1512–7.

    PubMed  Google Scholar 

  9. Garrett ER, Jackson AJ. Pharmacokinetics of morphine and its surrogates III: morphine and morphine 3-monoglucuronide pharmacokinetics in the dog as a function of dose. J Pharm Sci 1979;68:753–71.

    PubMed  Google Scholar 

  10. Boerner U, Abbott S, Roe RL. The metabolism of morphine and heroin in man. Drug Metab Rev 1975;4:39–73.

    PubMed  Google Scholar 

  11. SÄwe J, Kager L, Svensson J-O, Rane A. Oral morphine in cancer patients:in vivo kinetics andin vitro hepatic glucuronidation. Br J Clin Pharmacol 1985;19:495–501.

    PubMed  Google Scholar 

  12. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide — a potent antagonist of morphine analgesia. Life Sci 1990;47: 579–86.

    PubMed  Google Scholar 

  13. Gong Q-L, Hedner J, Björkman R, Nordberg G. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol 1991;193:47–56.

    PubMed  Google Scholar 

  14. Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990;47:12–9.

    PubMed  Google Scholar 

  15. Shimomura K, Kamata O, Ueki S, Ida S, Oguri K, Yoshimura H, Tsukamoto H. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971;105:45–52.

    PubMed  Google Scholar 

  16. Hanna MH, Peat SJ, Knibb A, Fung C. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaest 1991;66:103–7.

    Google Scholar 

  17. Hanks GW, Wand PJ. Enterohepatic circulation of opioid drugs. Is it clinically relevant in the treatment of cancer patients. Clin Pharmacokinet 1989;17:65–8.

    PubMed  Google Scholar 

  18. Dahlström BE, Paalzow LK. Pharmacokinetic interpretation of the enterohepatic recirculation and first pass elimination of morphine in the rat. J Pharmacokinet Biopharm 1978;6:505–19.

    PubMed  Google Scholar 

  19. Leslie ST, Rhodes A, Black FM. Controlled release morphine sulphate tablets, a study in normal volunteers. Br J Clin Pharmacol 1980;9:531–4.

    PubMed  Google Scholar 

  20. Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993;54:158–67.

    PubMed  Google Scholar 

  21. Somogyi AA, Nation RL, Olweny C, Tsirgiotis P, Van Crugten J, Milne RW, et al. Plasma concentrations and renal clearance of morphine, morphine-3-glucuronide and morphine-6-glucuronide in cancer patients receiving morphine. Clin Pharmacokinet 1993;24:413–20.

    PubMed  Google Scholar 

  22. D'Honneur G, Gilton A, Sandouk P, Scherrmann JM, Duvaldestin P. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. Anaesthesiology 1994;81:87–93.

    Google Scholar 

  23. Chan GLC, Matzke GR. Effects of renal insufficiency on the pharmacokinetics and pharmacodynamics of opioid analgesics. Drug Intell Clin Pharm 1987;21:773–83.

    PubMed  Google Scholar 

  24. Horton TL, Pollack GM. Enterohepatic recirculation and renal metabolism of morphine in the rat. J Pharm Sci 1991; 80:1147–52.

    PubMed  Google Scholar 

  25. Iwamoto K, Klaassen CD. First pass effect of morphine in rats. J Pharm Exp Ther 1977;200:236–44.

    Google Scholar 

  26. Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R. Pharmacokinetics of intravenously administered nicomorphine and its metabolites and glucuronide conjugates in surgical patients. Drug Invest 1994;7:63–73.

    Google Scholar 

  27. Jonsson T, Christensen CB, Jordening H, FrØlund C. The bioavailability of rectally administered morphine. Pharmacol Toxicol 1988;62:203–5.

    PubMed  Google Scholar 

  28. Westerling D, Lindahl S, Andersson KE, Andersson A. Absorption and bioavailability of rectally administered morphine in woman. Eur J Clin Pharmacol 1982;23:59–64.

    PubMed  Google Scholar 

  29. Westerling D, Andersson KE. Rectal administration of morphine hydrogel: absorption and bioavailability in woman. Acta Anaesth Scand 1984;28:540–3.

    PubMed  Google Scholar 

  30. Babul N, Darke AC. Disposition of morphine and its glucuronide metabolites after oral and rectal administration: evidence of route specificity. Clin Pharmacol Ther 1993;54: 286–92.

    PubMed  Google Scholar 

  31. Ellison NM, Lewis GO. Plasma concentrations following single doses of morphine sulfate in oral solutions and rectal suppository. Clin Pharm 1984;3:614–7.

    PubMed  Google Scholar 

  32. Kaiko RF, Fitzmartin RD, Thomas GB, Goldenheim PD. The bioavailability of morphine in controlled-release 30-mg tablets per rectum compared with immediately-release 30-mg rectal suppositories and controlled-release 30-mg oral tablets. Pharmacotherapy 1992;12:107–13.

    PubMed  Google Scholar 

  33. Moolenaar F, Leuverman A, Schoonen BJM. Bioavailability of morphine from suppositories. Int J Pharm 1988;45:161–4.

    Google Scholar 

  34. Greven J. Renal transport of drugs. In: Greger R, Lang F, Silbernagl S, editors. Renal transport of organic substances. Berlin: Springer Verlag, 1981:262–77.

    Google Scholar 

  35. Waltrous WM, May DG, Fujimoto JM. Mechanism of the renal tubular transport of morphine and morphine ethereal sulfate in the chicken. J Pharmacol Exp Ther 1970;172:224–9.

    PubMed  Google Scholar 

  36. Van Crugten J, Sallustio B, Nation RL, Somogyi AA. Renal tubular transport of morphine-6-glucuronide and morphine-3-glucuronide in the isolated perfused rat kidney. Drug Metab Dispos 1991;19:1087–92.

    PubMed  Google Scholar 

  37. Carrupt P, Testa B, Bechalany A, El Tayar N, Descas P, Perrisoud D. Morphine-6-glucuronide and morphine-3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991;34:1272–5.

    PubMed  Google Scholar 

  38. Hasselström J, SÄwe J. Morphine pharmacokinetics and metabolism in humans. Clin Pharmacokinet 1993;24:344–54.

    PubMed  Google Scholar 

  39. Patel N, Joel SP, Lam W, Slevin ML. Is morphine-3,6-diglucuronide an important metabolite of morphine or morphine-6-glucuronide? [abstract]. 7th World Congress on Pain; 1993 Aug 22–27; Paris. Seattle: IASP Publications, 1993;530:1405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopman-Kimenai, P.M., Vree, T.B., Booij, L.H.D.J. et al. Rectal administration of nicomorphine in patients improves biological availability of morphine and its glucuronide conjugates. Pharm World Sci 16, 348–353 (1994). https://doi.org/10.1007/BF02178565

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178565

Keywords

Navigation