Skip to main content
Log in

Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The number of colourings of a graphG withQ or fewer colors is a polynomial inQ known as the chromatic polynomialP G (Q). It coïncides with the partition functionF G of theQ state Potts model onG at zero temperature and in the antiferromagnetic regimee K=0. In the planar case, the Beraha conjecture particularizes the numbers\(B_n = 4\cos ^2 \frac{\pi }{n}\) as possible accumulation points of real zeroes ofP G in the infinite graph limit. We suggest in this work an approach based on recent developments of quantum groups to handle this conjecture. For the square, triangular and honeycomb lattices and systems wrapped on a cylinderl×t, we first exhibit in the (Q, e K) Potts parameter space a critical line, whereF G(Q,e K) has real zeroes converging to and only to theB n 's asl, t→∞. The analysis is based on the vertex representation of theQ state Potts model, quantum algebraU qSl (2) properties forq a root of unity, and conformal invariance.U qSl (2) symmetry is present for anye K, including the chromatic polynomial casee K=0. Using an additional hypothesis on the eigenvalues structure and knowledge of the Potts parameter space, we then argue that forP G (Q), real zeros occur and converge toB n 's, 2≦nn 0 only, wheren 0 depends on the lattice. Extensions to other kinds of graphs and size dependence of the zeros are discussed. Finally physical applications are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saaty, T., Kainen, P.: The four color problem. New York: McGraw-Hill 1977 and references therein

    Google Scholar 

  2. Baxter, R.J.: Exactly solved models in statistical mechanics. New York: Academic Press 1982

    Google Scholar 

  3. Wu, F.Y.: Rev. Mod. Phys.54, 235 (1982)

    Google Scholar 

  4. Beraha, S.: Infinite non-trivial families of maps and chromials, thesis, John Hopkins University

  5. Beraha, S., Kahane, J., Weiss, N.: In: Studies in foundations and combinatorics, Adv. Math. Suppl. Stud.1, 213 (1978)

  6. Beraha, S., Kahane, J., Weiss, N.J.: J. Comb. Theory B28, 52 (1980)

    Google Scholar 

  7. Tutte, W.T.: J. Comb. Theory9, 289 (1970)

    Google Scholar 

  8. Tutte, W.T.: Can. J. Math.25, 426 (1973)

    Google Scholar 

  9. Hall, D.W., Siry, J.W., Vanderslice, B.R.: Proc. Am. Math. Soc.16, 620 (1965)

    Google Scholar 

  10. Biggs, N.L., Damerall, R.M., Sands, D.A.: J. Comb. Theory B12, 123 (1962)

    Google Scholar 

  11. Baxter, R.J.: J. Phys. A19, 2821 (1986); J. Phys. A20, 5241 (1987)

    Google Scholar 

  12. Jones, V.: Invent. Math.72, 1 (1983)

    Google Scholar 

  13. Friedan, D., Qiu, Z., Shenker, S.: Phys. Rev. Lett.52, 1575 (1984)

    Google Scholar 

  14. Andrews, G.E., Baxter, R.J., Forrester, P.J.: J. Stat. Phys.35, 193 (1983)

    Google Scholar 

  15. Pasquier, V.: Nucl. Phys. B295, 491 (1988)

    Google Scholar 

  16. Pasquier, V., Saleur, H.: Nucl. Phys. B330, 523 (1990)

    Google Scholar 

  17. Alvarez Gaumé, L., Gomez, C., Sierra, G.: Phys. Lett. B220, 142 (1989)

    Google Scholar 

  18. Gervais, J.L.: The quantum group structure of 2D gravity and minimal models. Preprint LPTENS 1989

  19. Drinfeld, V.G.: Dokl. Akad. Nauk. SSSR283, 1060 (1985)

    Google Scholar 

  20. Jimbo, M.: Lett. Math. Phys.10, 63 (1985)

    Google Scholar 

  21. Drinfeld, V.G.: Proc. ICM (AMS Berkeley) 1978 and references therein

  22. Baxter, R.J., Kelland, S.B., Wu, F.Y.: J. Phys. A9, 397 (1976)

    Google Scholar 

  23. di Francesco, P., Saleur, H., Zuber, J.B.: J. Stat. Phys.49, 57 (1987)

    Google Scholar 

  24. Bauer, M., Saleur, H.: Nucl. Phys.B320, 591 (1989)

    Google Scholar 

  25. Lusztig, G.: Modular representations and quantum groups. Preprint 1989

  26. Roche, P., Arnaudon, D.: Lett. Math. Phys.17, 295 (1989)

    Google Scholar 

  27. Felder, G.: Nucl. Phys.B317, 215 (1989)

    Google Scholar 

  28. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. Preprint 1986

  29. Gaudin, M.: La fonction d'onde de Bethe. Paris: Masson 1983

    Google Scholar 

  30. de Vega, H., Woynarovich, F.: Nucl. Phys.B 251, 439 (1985)

    Google Scholar 

  31. Hamer, C.J., Quispel, G.R.W., Batchelor, M.T.: J. Phys. A20, 5677 (1987)

    Google Scholar 

  32. See Itzykson, C., Saleur, H., Zuber, J.B.: Conformal invariance and applications to statistical mechanics. Singapore: World Scientific 1988 and references therein

    Google Scholar 

  33. Kim, D., Pearce, P.A.: J. Phys. A20, L451 (1987)

    Google Scholar 

  34. Kim, D., Joseph, R.I.: J. Phys. C7, L167 (1974)

    Google Scholar 

  35. Baxter, R.J., Temperley, H.N.V., Ashley, S.E.: Proc. Roy. Soc. London A358, 535 (1978)

    Google Scholar 

  36. Andrews, G.E.: Theory of partitions. Reading, MA: Addison Wesley 1976

    Google Scholar 

  37. Baxter, R.J.: J. Stat. Phys.28, 1 (1982)

    Google Scholar 

  38. Baxter, R.J.: Proc. R. Soc. Lond. A383, 43 (1982)

    Google Scholar 

  39. Lieb, E.H., Wu, F.Y.: In: Phase transitions and critical phenomena. Vol. 1, Domb, C., Green, M.S. (eds.). London 1972

  40. Pasquier, V.: Commun. Math. Phys.118, 355 (1988)

    Google Scholar 

  41. Zamolodchikov, A.B., Fateev, V.A.: Nucl. Phys. B240, 115 (1984)

    Google Scholar 

  42. Distler, J., Qiu, Z.: BRS cohomology and a Feigin Fuchs representation of parafermionic theories. Preprint 1989

  43. Bazhanov, V.V., Reshetikhin, N.Yu.: Int. J. Mod. Phys. A4, 115 (1989)

    Google Scholar 

  44. Saleur, H.: Phys. Rev. B35, 3657 (1987)

    Google Scholar 

  45. Duplantier, B., David, F.: J. Stat. Phys.51, 327 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Gawedzki

Laboratoire de l'Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleur, H. Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups. Commun.Math. Phys. 132, 657–679 (1990). https://doi.org/10.1007/BF02156541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02156541

Keywords

Navigation