Siberian Mathematical Journal

, Volume 36, Issue 2, pp 389–403 | Cite as

Initial-boundary value problems for the equations of a viscoelastic fluid of Oldroyd type

  • E. M. Turganbaev


Viscoelastic Fluid Oldroyd Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Guillopé and J.-C. Saut, “Résultats d'existence pour des fluides viscoélastiques à loi de comportement de type différentiel,” C. R. Acad. Sci. Paris Sér. I Math.,305, 489–492 (1987).Google Scholar
  2. 2.
    A. P. Oskolkov, On Nonstationary Flows of Viscoelastic Fluids [Preprint, R-2-80] [in Russian], Leningrad (1980).Google Scholar
  3. 3.
    Yu. Ya. Agranovich and P. E. Sobolevskiĩ, “Motion of a nonlinear viscoelastic fluid,” Dokl. Akad. Nauk SSSR,314, No. 3, 521–525 (1990).Google Scholar
  4. 4.
    M. Renardy, “Recent advances in the mathematical theory of steady flow of viscoelastic fluids,” J. Non-Newtonian Fluid Mech.,29, 11–24 (1988).Google Scholar
  5. 5.
    O. A. Ladyzhenskaya, Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid [in Russian], Fizmatgiz, Moscow (1970).Google Scholar
  6. 6.
    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems of Inhomogeneous Fluid Mechanics [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  7. 7.
    J.-L. Lions, Some Methods for Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).Google Scholar
  8. 8.
    A. V. Kazhikhov, “Solvability of certain unilateral boundary value problems for the Navier-Stokes equations,” Dinamika Sploshn. Sredy (Novosibirsk), No. 16, 5–34 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • E. M. Turganbaev
    • 1
  1. 1.Novosibirsk

Personalised recommendations