Advertisement

Siberian Mathematical Journal

, Volume 36, Issue 2, pp 305–323 | Cite as

On stability of classes of conformal mappings. I

  • A. P. Kopylov
Article

Keywords

Conformal Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Kopylov, Stability in theC-Norm of Classes of Mappings [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  2. 2.
    Yu. G. Reshetnyak, Stability Theorems in Geometry and Analysis [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  3. 3.
    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  4. 4.
    C. B. Morrey Jr., “Multiple integral problems in the calculus of variations and related topics,” Univ. California Publ. Math. (N. S.),1, 1–130 (1943).Google Scholar
  5. 5.
    F. John, “Rotation and strain,” Comm. Pure Appl. Math.,14, No. 3, 391–413 (1961).Google Scholar
  6. 6.
    Yu. G. Reshetnyak, “Stability estimates in the classW p1 in Liouville's theorem on conformal mappings for a closed domain,” Sibirsk. Mat. Zh.,17, No. 6, 1382–1394 (1976).Google Scholar
  7. 7.
    V. M. Gol'dshteĩn, “On the behavior of mappings with bounded distortion when the distortion coefficient is close to 1,” Sibirsk. Mat. Zh.,12, No. 6, 1250–1258 (1971).Google Scholar
  8. 8.
    O. Martio and J. Sarvas, “Injectivity theorems in plane and space,” Ann. Acad. Sci. Fenn. Ser. AI Math.,4, No. 2, 383–401 (1979).Google Scholar
  9. 9.
    J. Sarvas, “Coefficient of injectivity for quasiregular mappings,” Duke Math. J.,43, 147–158 (1976).Google Scholar
  10. 10.
    N. S. Dairbekov, “On the stability of classes of conformal mappings in the plane and space,” Sibirsk. Mat. Zh.,27, No. 5, 188–191 (1986).Google Scholar
  11. 11.
    A. P. Kopylov, “On the behavior on hyperplanes of quasi conformal space mappings close to conformal mappings,” Dokl. Akad. Nauk SSSR,209, No. 6, 1278–1280 (1973).Google Scholar
  12. 12.
    A. P. Kopylov, “Boundary values of mappings on a semispace which are close to conformal,” Sibirsk. Mat. Zh.,24, No. 5, 76–93 (1983).Google Scholar
  13. 13.
    F. W. Gehring and O. Martio, “Quasiextremal distance domains and extension of quasiconformal mappings,” J. Analyse Math.,45, 181–206 (1985).Google Scholar
  14. 14.
    B. V. Boyarskiĩ, “Homeomorphic solutions of Beltrami systems,” Dokl. Akad. Nauk SSSR,102, No. 5, 661–664 (1955).Google Scholar
  15. 15.
    O. Lehto, “Remarks on the integrability of the derivatives of quasiconformal mappings,” Ann. Acad. Sci. Fenn. Ser. AI Math., No. 371, 1–8 (1965).Google Scholar
  16. 16.
    A. P. Kopylov, “Integral means and quasiconformal mappings,” Dokl. Akad. Nauk SSSR,231, No. 2, 289–291 (1976).Google Scholar
  17. 17.
    L. Bers, “On a theorem of Mori and the definition of quasiconformality,” Trans. Amer. Math. Soc.,84, No. 1, 78–84 (1957).Google Scholar
  18. 18.
    S. P. Ponomarëv, “On some condition of quasiconformality,” Mat. Zametki,9, No. 6, 663–666 (1971).Google Scholar
  19. 19.
    S. Saks, Theory of the Integral [Russian translation], Izdat. Inostr. Lit., Moscow (1949).Google Scholar
  20. 20.
    F. W. Gehring, “The Carathéodory convergence theorem for quasiconformal mappings in space,” Ann. Acad. Sci. Fenn. Ser. AI Math., No. 336, 1–21 (1963).Google Scholar
  21. 21.
    A. P. Kopylov, “On some new aspects in stability theory of quasiconformal mappings,” Dokl. RAN,340, No. 6 (1994)Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. P. Kopylov
    • 1
  1. 1.Novosibirsk

Personalised recommendations