Siberian Mathematical Journal

, Volume 36, Issue 2, pp 270–286 | Cite as

Hyperfinite approximations of compact groups and their representations

  • E. I. Gordon
  • I. A. Korchagina


Compact Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. I. Gordon, “Nonstandard analysis and compact Abelian groups,” Sibirsk. Mat. Zh.,32, No. 2, 26–40 (1991).Google Scholar
  2. 2.
    E. I. Gordon, “Nonstandard analysis and locally compact Abelian groups,” Acta Appl. Math.,25, 221–239 (1991).Google Scholar
  3. 3.
    E. I. Gordon, “Hyperfinite approximations of commutative topological groups,” in: Advances in Analysis, Probability, and Mathematical Physics: Contributions of Nonstandard Analysis, Kluwer, Amsterdam (1993).Google Scholar
  4. 4.
    A. M. Vershik, “Countable groups are close to finite,” in: F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications [in Russian], Mir, Moscow, 1973, pp. 112–135.Google Scholar
  5. 5.
    A. M. Stepin, “Approximability of groups and group actions,” Uspekhi Mat. Nauk, No. 6, 123–124 (1983).Google Scholar
  6. 6.
    R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means,” Izv. Akad. Nauk SSSR Ser. Mat.,48, No. 5, 939–985 (1984).Google Scholar
  7. 7.
    Ch. Champetier, L'Espace de Groups de Type Fini, Prepublications Inst. Fourier (Grenoble), No. 231, 1–19 (1993).Google Scholar
  8. 8.
    S. Albeverio, J. E. Fenstad et al., Nonstandard Methods in Stochastic Analysis and Mathematical Physics [Russian translation], Mir, Moscow (1990).Google Scholar
  9. 9.
    E. Nelson, “Internal set theory: a new approach to nonstandard analysis,” Bull. Amer. Math. Soc.,83, No. 6, 1165–1196 (1977).Google Scholar
  10. 10.
    A. G. Kusraev and S. S. Kutateladze, Nonstandard Methods of Analysis [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  11. 11.
    E. Hewitt and K. Ross, Abstract Harmonic Analysis. Vol. I, II [Russian translation], Nauka, Moscow (1975).Google Scholar
  12. 12.
    M. A. Naĩark, Representation Theory of Groups [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    J.-P. Serre, Linear Representations of Finite Groups [Russian translation], Mir, Moscow (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • E. I. Gordon
    • 1
  • I. A. Korchagina
    • 1
  1. 1.Nizhnii

Personalised recommendations